1234567891011121314151617181920212223242526272829303132333435363738394041424344454647 |
- \documentclass{article}
- \usepackage[pdftex,active,tightpage]{preview}
- \setlength\PreviewBorder{2mm}
- \usepackage[utf8]{inputenc} % this is needed for umlauts
- \usepackage[ngerman]{babel} % this is needed for umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- \usepackage{amssymb,amsmath,amsfonts} % nice math rendering
- \usepackage{braket} % needed for \Set
- \usepackage{algorithm,algpseudocode}
- \usepackage{tikz}
- \usetikzlibrary{decorations.pathreplacing,calc}
- \newcommand{\tikzmark}[1]{\tikz[overlay,remember picture] \node (#1) {};}
- \newcommand*{\AddNote}[4]{%
- \begin{tikzpicture}[overlay, remember picture]
- \draw [decoration={brace,amplitude=0.5em},decorate,very thick]
- ($(#3)!(#1.north)!($(#3)-(0,1)$)$) --
- ($(#3)!(#2.south)!($(#3)-(0,1)$)$)
- node [align=center, text width=2.5cm, pos=0.5, anchor=west] {#4};
- \end{tikzpicture}
- }%
- \begin{document}
- \begin{preview}
- \begin{algorithm}[H]
- \begin{algorithmic}
- \Require $R \in \mathbb{Z}^n, P \in (\mathbb{N}_{\geq 1})^n, n \in \mathbb{N}_{\geq 1}$, where \\
- $R$ is a vector with all rests $r_i$ and\\
- $P$ is a vector with all modulos $p_i$ such that\\
- ($x \equiv r_i \mod p_i$) and $\left(i \neq j \Rightarrow \Call{gcd}{p_i, p_j} = 1 \right)$
- \\
- \State $M \gets \prod_{p \in P} p$
- \For{$i \in \{1, \dots, n\}$}
- \State $M_i \gets \frac{M}{p_i} $
- \State $y_i \gets \Call{getMultiplicativeInverse}{M_i, R_i}$
- \EndFor
- \\
- \State \Return $(\sum_{i=1}^n R_i y_i M_i, M)$
- \end{algorithmic}
- \caption{Solve a system of linear congruences}
- \label{alg:solveCongruences}
- \end{algorithm}
- \end{preview}
- \end{document}
|