123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123 |
- \documentclass{article}
- \usepackage[utf8]{inputenc} % this is needed for umlauts
- \usepackage[ngerman]{babel} % this is needed for umlauts
- \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
- \usepackage[pdftex,active,tightpage]{preview}
- \setlength\PreviewBorder{2mm}
- \usepackage{tikz}
- \usetikzlibrary{shapes,decorations,calc,patterns}
- \usepackage{amsmath,amssymb}
- \begin{document}
- \begin{preview}
- %\begin{align*}
- % f: \mathbb{R} \rightarrow \mathbb{R}\\
- % g: \mathbb{R} \rightarrow \mathbb{R}\\
- %\end{align*}
- \begin{tikzpicture}[%
- auto,
- example/.style={
- rectangle,
- draw=blue,
- thick,
- fill=blue!20,
- text width=4.5em,
- align=center,
- rounded corners,
- minimum height=2em
- },
- algebraicName/.style={
- text width=7em,
- align=center,
- minimum height=2em
- },
- explanation/.style={
- text width=10em,
- align=left,
- minimum height=3em
- }
- ]
- \pgfdeclarepatternformonly{north east lines wide}%
- {\pgfqpoint{-1pt}{-1pt}}%
- {\pgfqpoint{10pt}{10pt}}%
- {\pgfqpoint{9pt}{9pt}}%
- {
- \pgfsetlinewidth{3pt}
- \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
- \pgfpathlineto{\pgfqpoint{9.1pt}{9.1pt}}
- \pgfusepath{stroke}
- }
- \draw[fill=yellow!20,yellow!20, rounded corners] (-1.85, 0.70) rectangle (13.4,-6.85);
- \draw[fill=lime!20,lime!20, rounded corners] (-1.75, 0.60) rectangle (7.3,-6.75);
- \draw[fill=purple!20,purple!20, rounded corners] (-1.65,-1.55) rectangle (7.2,-6.65);
- \draw[fill=blue!20,blue!20, rounded corners] ( 4.55,-3.45) rectangle (13.1,-6.55);
- \draw (0, 0) node[algebraicName] (A) {gleichmäßig stetig}
- (3, 0) node[explanation] (B) {
- \begin{minipage}{0.90\textwidth}
- \tiny
- $\forall \varepsilon >0 \ \exists \delta=\delta(\varepsilon)>0\colon\\ |f(x)-f(z)| < \varepsilon\\ \forall x,z \in D \text{ mit } |x-z|<\delta$
- \end{minipage}
- }
- (6, 0) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_5(x)=\sin(x)$}
- (6,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_6(x)=\cos(x)$}
- (4,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_9(x)=\sqrt x$}
- (0,-2) node[algebraicName, purple] (C) {Lipschitz-stetig}
- (3.5,-2) node[explanation] (X) {
- \begin{minipage}{90\textwidth}
- \tiny
- $f$ heißt auf $D$ \textbf{Lipschitz-stetig}\\
- $:\Leftrightarrow \exists L\ge 0: |f(x)-f(z)|\le L|x-z|\ \forall x,z \in D$
- \end{minipage}
- }
- (12,-6) node[example, draw=blue, fill=black!15] (G) {\tiny$f_2(x) = e^x$}
- (0,-6) node[example, draw=purple, fill=red!15] (K) {\tiny$f_4(x) = |x|$}
- (6,-6) node[example, draw=purple, fill=red!15, pattern=north east lines wide, pattern color=black!25] (N) {\tiny$f_7(x) = 42$}
- (6,-4) node[example, draw=purple, fill=red!15, pattern=north east lines wide, pattern color=black!25] (ANCHORD) {\tiny$f_3(x) = 42$}
- (12,-2) node[example, draw=yellow, fill=yellow!15] (Q) {\tiny$f_1(x) = |x|$}
- (9, 0) node[algebraicName] (O) {stetig}
- (12,0) node[explanation] (X) {
- \begin{minipage}{0.9\textwidth}
- \tiny
- $f$ heißt stetig in $x_0 :\Leftrightarrow$\\
- $\forall \varepsilon > 0\ \exists \delta = \delta(\varepsilon)\colon$\\
- $|f(x)-f(x_0)|<\varepsilon$ \\
- $\forall x\in D_\delta(x_0)$
- \end{minipage}
- }
- (12,-4) node[example, draw=blue, fill=black!15] (P) {\tiny$g_1(x) = \frac{1}{x}$}
- (12,-5) node[example, draw=blue, fill=black!15] (P) {\tiny$f_8(x) = x^2$}
- (9, -4) node[algebraicName] (random1) {differenzierbar}
- (9.8, -4.7) node[explanation] (X) {
- \begin{minipage}{0.9\textwidth}
- \tiny
- $f$ heißt differenzierbar in $x_0 :\Leftrightarrow$\\
- $\lim_{h \rightarrow 0} \frac{f(x_0+h) - f(x_0)}{h}$
- existiert
- \end{minipage}
- };
- % LP-Stetig
- \draw[purple, thick, rounded corners] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
- % gleichmäßig stetig
- \draw[lime, thick, rounded corners] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
- % stetige funktionen
- \draw[yellow, thick, rounded corners] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
- % differenzierbar
- \draw[blue, thick, rounded corners] ($(ANCHORD.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.2,-0.2)$);
- \end{tikzpicture}
- \end{preview}
- \end{document}
|