stetigkeit-differenzierbarkeit.tex 4.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. \documentclass{article}
  2. \usepackage[utf8]{inputenc} % this is needed for umlauts
  3. \usepackage[ngerman]{babel} % this is needed for umlauts
  4. \usepackage[T1]{fontenc} % this is needed for correct output of umlauts in pdf
  5. \usepackage[pdftex,active,tightpage]{preview}
  6. \setlength\PreviewBorder{2mm}
  7. \usepackage{tikz}
  8. \usetikzlibrary{shapes,decorations,calc,patterns}
  9. \usepackage{amsmath,amssymb}
  10. \begin{document}
  11. \begin{preview}
  12. %\begin{align*}
  13. % f: \mathbb{R} \rightarrow \mathbb{R}\\
  14. % g: \mathbb{R} \rightarrow \mathbb{R}\\
  15. %\end{align*}
  16. \begin{tikzpicture}[%
  17. auto,
  18. example/.style={
  19. rectangle,
  20. draw=blue,
  21. thick,
  22. fill=blue!20,
  23. text width=4.5em,
  24. align=center,
  25. rounded corners,
  26. minimum height=2em
  27. },
  28. algebraicName/.style={
  29. text width=7em,
  30. align=center,
  31. minimum height=2em
  32. },
  33. explanation/.style={
  34. text width=10em,
  35. align=left,
  36. minimum height=3em
  37. }
  38. ]
  39. \pgfdeclarepatternformonly{north east lines wide}%
  40. {\pgfqpoint{-1pt}{-1pt}}%
  41. {\pgfqpoint{10pt}{10pt}}%
  42. {\pgfqpoint{9pt}{9pt}}%
  43. {
  44. \pgfsetlinewidth{3pt}
  45. \pgfpathmoveto{\pgfqpoint{0pt}{0pt}}
  46. \pgfpathlineto{\pgfqpoint{9.1pt}{9.1pt}}
  47. \pgfusepath{stroke}
  48. }
  49. \draw[fill=yellow!20,yellow!20, rounded corners] (-1.85, 0.70) rectangle (13.4,-6.85);
  50. \draw[fill=lime!20,lime!20, rounded corners] (-1.75, 0.60) rectangle (7.3,-6.75);
  51. \draw[fill=purple!20,purple!20, rounded corners] (-1.65,-1.55) rectangle (7.2,-6.65);
  52. \draw[fill=blue!20,blue!20, rounded corners] ( 4.55,-3.45) rectangle (13.1,-6.55);
  53. \draw (0, 0) node[algebraicName] (A) {gleichmäßig stetig}
  54. (3, 0) node[explanation] (B) {
  55. \begin{minipage}{0.90\textwidth}
  56. \tiny
  57. $\forall \varepsilon >0 \ \exists \delta=\delta(\varepsilon)>0\colon\\ |f(x)-f(z)| < \varepsilon\\ \forall x,z \in D \text{ mit } |x-z|<\delta$
  58. \end{minipage}
  59. }
  60. (6, 0) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_5(x)=\sin(x)$}
  61. (6,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_6(x)=\cos(x)$}
  62. (4,-1) node[example, draw=lime, fill=lime!15] (X) {\tiny$f_9(x)=\sqrt x$}
  63. (0,-2) node[algebraicName, purple] (C) {Lipschitz-stetig}
  64. (3.5,-2) node[explanation] (X) {
  65. \begin{minipage}{90\textwidth}
  66. \tiny
  67. $f$ heißt auf $D$ \textbf{Lipschitz-stetig}\\
  68. $:\Leftrightarrow \exists L\ge 0: |f(x)-f(z)|\le L|x-z|\ \forall x,z \in D$
  69. \end{minipage}
  70. }
  71. (12,-6) node[example, draw=blue, fill=black!15] (G) {\tiny$f_2(x) = e^x$}
  72. (0,-6) node[example, draw=purple, fill=red!15] (K) {\tiny$f_4(x) = |x|$}
  73. (6,-6) node[example, draw=purple, fill=red!15, pattern=north east lines wide, pattern color=black!25] (N) {\tiny$f_7(x) = 42$}
  74. (6,-4) node[example, draw=purple, fill=red!15, pattern=north east lines wide, pattern color=black!25] (ANCHORD) {\tiny$f_3(x) = 42$}
  75. (12,-2) node[example, draw=yellow, fill=yellow!15] (Q) {\tiny$f_1(x) = |x|$}
  76. (9, 0) node[algebraicName] (O) {stetig}
  77. (12,0) node[explanation] (X) {
  78. \begin{minipage}{0.9\textwidth}
  79. \tiny
  80. $f$ heißt stetig in $x_0 :\Leftrightarrow$\\
  81. $\forall \varepsilon > 0\ \exists \delta = \delta(\varepsilon)\colon$\\
  82. $|f(x)-f(x_0)|<\varepsilon$ \\
  83. $\forall x\in D_\delta(x_0)$
  84. \end{minipage}
  85. }
  86. (12,-4) node[example, draw=blue, fill=black!15] (P) {\tiny$g_1(x) = \frac{1}{x}$}
  87. (12,-5) node[example, draw=blue, fill=black!15] (P) {\tiny$f_8(x) = x^2$}
  88. (9, -4) node[algebraicName] (random1) {differenzierbar}
  89. (9.8, -4.7) node[explanation] (X) {
  90. \begin{minipage}{0.9\textwidth}
  91. \tiny
  92. $f$ heißt differenzierbar in $x_0 :\Leftrightarrow$\\
  93. $\lim_{h \rightarrow 0} \frac{f(x_0+h) - f(x_0)}{h}$
  94. existiert
  95. \end{minipage}
  96. };
  97. % LP-Stetig
  98. \draw[purple, thick, rounded corners] ($(C.north west)+(-0.3,0.1)$) rectangle ($(N.south east)+(0.3,-0.3)$);
  99. % gleichmäßig stetig
  100. \draw[lime, thick, rounded corners] ($(A.north west)+(-0.4,0.1)$) rectangle ($(N.south east)+(0.4,-0.4)$);
  101. % stetige funktionen
  102. \draw[yellow, thick, rounded corners] ($(A.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.5,-0.5)$);
  103. % differenzierbar
  104. \draw[blue, thick, rounded corners] ($(ANCHORD.north west)+(-0.5,0.2)$) rectangle ($(G.south east)+(0.2,-0.2)$);
  105. \end{tikzpicture}
  106. \end{preview}
  107. \end{document}