|
@@ -53,9 +53,9 @@
|
|
|
"- Vectorization\n",
|
|
|
"- Using arrays in Conditions\n",
|
|
|
"\n",
|
|
|
- "** 15:30 - 16:00 ** (30 mins) Coffee Break\n",
|
|
|
+ "** 15:30 - 15:45 ** (15 mins) Coffee Break\n",
|
|
|
"\n",
|
|
|
- "** 16:00 - 16:30** (30 mins) Numpy Operations\n",
|
|
|
+ "** 15:45 - 16:15** (30 mins) Numpy Operations\n",
|
|
|
"\n",
|
|
|
"- Linear Algebra\n",
|
|
|
"- Array and Matrix\n",
|
|
@@ -64,16 +64,18 @@
|
|
|
"\n",
|
|
|
"** PART 2 ** Advanced Numpy Functions and Applications (16:30 - 17:30)\n",
|
|
|
"\n",
|
|
|
- "** 16:30- 17:00 ** (30 mins) Data Processing\n",
|
|
|
+ "** 16:15- 16:55 ** (40 mins) Data Processing\n",
|
|
|
"\n",
|
|
|
"- File I/0\n",
|
|
|
"- Data Processing\n",
|
|
|
"- Memmap and Serialization\n",
|
|
|
"- `numexpr`\n",
|
|
|
"\n",
|
|
|
- "** 12:55 - 13:25 ** Connecting Numpy with the Rest of the world\n",
|
|
|
+ "** 16:55 - 17:25 ** (30 mins) Numpy Application (Machine Learning)\n",
|
|
|
"\n",
|
|
|
- "- Machine Learning with scikit-learn\n",
|
|
|
+ "- Machine Learning Intro\n",
|
|
|
+ "- Clustering with scipy\n",
|
|
|
+ "- Clustering with scikit-learn\n",
|
|
|
"\n",
|
|
|
"** 17:25 - 17:30 ** A look at the future (of Numpy)"
|
|
|
]
|
|
@@ -131,7 +133,7 @@
|
|
|
"\n",
|
|
|
"The following command will install all required packages:\n",
|
|
|
"\n",
|
|
|
- " $ conda install numpy scipy matplotlib scikit-learn ipython-notebook\n",
|
|
|
+ " $ conda install numpy scipy matplotlib scikit-learn ipython-notebook numexpr\n",
|
|
|
" \n",
|
|
|
"Alternatively, you can download and install the (very large) **Anaconda software distribution**, found at [https://store.continuum.io/]()."
|
|
|
]
|
|
@@ -157,7 +159,8 @@
|
|
|
" - `pip install scipy`\n",
|
|
|
" - `pip install matplotlib`\n",
|
|
|
" - `pip install \"ipython[all]\" # don't forget the quotation!`\n",
|
|
|
- " - `pip install scikit-learn`"
|
|
|
+ " - `pip install scikit-learn`\n",
|
|
|
+ " - `pip install numexpr`"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
@@ -248,7 +251,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 2,
|
|
|
+ "execution_count": 1,
|
|
|
"metadata": {
|
|
|
"collapsed": true
|
|
|
},
|
|
@@ -257,7 +260,7 @@
|
|
|
"import numpy as np\n",
|
|
|
"import scipy as sp\n",
|
|
|
"import matplotlib.pyplot as plt\n",
|
|
|
- "import pandas as pd\n",
|
|
|
+ "import numexpr as ne\n",
|
|
|
"import sklearn"
|
|
|
]
|
|
|
},
|
|
@@ -270,7 +273,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 6,
|
|
|
+ "execution_count": 2,
|
|
|
"metadata": {
|
|
|
"collapsed": false
|
|
|
},
|
|
@@ -280,10 +283,11 @@
|
|
|
"output_type": "stream",
|
|
|
"text": [
|
|
|
"numpy: 1.9.2\n",
|
|
|
- "scipy: 0.15.1\n",
|
|
|
+ "scipy: 0.16.0\n",
|
|
|
"matplotlib: 1.4.3\n",
|
|
|
- "iPython: 3.2.0\n",
|
|
|
- "scikit-learn: 0.16.1\n"
|
|
|
+ "iPython: 4.0.0\n",
|
|
|
+ "scikit-learn: 0.16.1\n",
|
|
|
+ "numexpr: 2.4.3\n"
|
|
|
]
|
|
|
}
|
|
|
],
|
|
@@ -301,7 +305,10 @@
|
|
|
"print('iPython:', IPython.__version__)\n",
|
|
|
"\n",
|
|
|
"import sklearn\n",
|
|
|
- "print('scikit-learn:', sklearn.__version__)"
|
|
|
+ "print('scikit-learn:', sklearn.__version__)\n",
|
|
|
+ "\n",
|
|
|
+ "import numexpr\n",
|
|
|
+ "print('numexpr:', numexpr.__version__)"
|
|
|
]
|
|
|
},
|
|
|
{
|