import matplotlib.pyplot as plt def plot_kmeans_clustering_results(c1, c2, c3, vq1, vq2, vq3): # Setting plot limits x1, x2 = -10, 10 y1, y2 = -10, 10 fig = plt.figure() fig.subplots_adjust(hspace=0.1, wspace=0.1) ax1 = fig.add_subplot(121, aspect='equal') ax1.scatter(c1[:, 0], c1[:, 1], lw=0.5, color='#00CC00') ax1.scatter(c2[:, 0], c2[:, 1], lw=0.5, color='#028E9B') ax1.scatter(c3[:, 0], c3[:, 1], lw=0.5, color='#FF7800') ax1.xaxis.set_visible(False) ax1.yaxis.set_visible(False) ax1.set_xlim(x1, x2) ax1.set_ylim(y1, y2) ax1.text(-9, 8, 'Original') ax2 = fig.add_subplot(122, aspect='equal') ax2.scatter(vqc1[:, 0], vqc1[:, 1], lw=0.5, color='#00CC00') ax2.scatter(vqc2[:, 0], vqc2[:, 1], lw=0.5, color='#028E9B') ax2.scatter(vqc3[:, 0], vqc3[:, 1], lw=0.5, color='#FF7800') ax2.xaxis.set_visible(False) ax2.yaxis.set_visible(False) ax2.set_xlim(x1, x2) ax2.set_ylim(y1, y2) ax2.text(-9, 8, 'VQ identified') return fig