Hidden Markov Models
Contents
Hidden Markov Models¶
In this section, we introduce Hidden Markov Models (HMMs).
Boilerplate¶
# Install necessary libraries
try:
import jax
except:
# For cuda version, see https://github.com/google/jax#installation
%pip install --upgrade "jax[cpu]"
import jax
try:
import jsl
except:
%pip install git+https://github.com/probml/jsl
import jsl
try:
import rich
except:
%pip install rich
import rich
# Import standard libraries
import abc
from dataclasses import dataclass
import functools
import itertools
from typing import Any, Callable, NamedTuple, Optional, Union, Tuple
import matplotlib.pyplot as plt
import numpy as np
import jax
import jax.numpy as jnp
from jax import lax, vmap, jit, grad
from jax.scipy.special import logit
from jax.nn import softmax
from functools import partial
from jax.random import PRNGKey, split
import inspect
import inspect as py_inspect
from rich import inspect as r_inspect
from rich import print as r_print
def print_source(fname):
r_print(py_inspect.getsource(fname))
Utility code¶
def normalize(u, axis=0, eps=1e-15):
'''
Normalizes the values within the axis in a way that they sum up to 1.
Parameters
----------
u : array
axis : int
eps : float
Threshold for the alpha values
Returns
-------
* array
Normalized version of the given matrix
* array(seq_len, n_hidden) :
The values of the normalizer
'''
u = jnp.where(u == 0, 0, jnp.where(u < eps, eps, u))
c = u.sum(axis=axis)
c = jnp.where(c == 0, 1, c)
return u / c, c
Example: Casino HMM¶
We first create the “Ocassionally dishonest casino” model from [DEKM98].

Illustration of the casino HMM.¶
There are 2 hidden states, each of which emit 6 possible observations.
# state transition matrix
A = np.array([
[0.95, 0.05],
[0.10, 0.90]
])
# observation matrix
B = np.array([
[1/6, 1/6, 1/6, 1/6, 1/6, 1/6], # fair die
[1/10, 1/10, 1/10, 1/10, 1/10, 5/10] # loaded die
])
pi, _ = normalize(np.array([1, 1]))
pi = np.array(pi)
(nstates, nobs) = np.shape(B)
WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
Let’s make a little data structure to store all the parameters. We use NamedTuple rather than dataclass, since we assume these are immutable. (Also, standard python dataclass does not work well with JAX, which requires parameters to be pytrees, as discussed in https://github.com/google/jax/issues/2371).
Array = Union[np.array, jnp.array]
class HMM(NamedTuple):
trans_mat: Array # A : (n_states, n_states)
obs_mat: Array # B : (n_states, n_obs)
init_dist: Array # pi : (n_states)
params_np = HMM(A, B, pi)
print(params_np)
print(type(params_np.trans_mat))
params = jax.tree_map(lambda x: jnp.array(x), params_np)
print(params)
print(type(params.trans_mat))
HMM(trans_mat=array([[0.95, 0.05],
[0.1 , 0.9 ]]), obs_mat=array([[0.16666667, 0.16666667, 0.16666667, 0.16666667, 0.16666667,
0.16666667],
[0.1 , 0.1 , 0.1 , 0.1 , 0.1 ,
0.5 ]]), init_dist=array([0.5, 0.5], dtype=float32))
<class 'numpy.ndarray'>
HMM(trans_mat=DeviceArray([[0.95, 0.05],
[0.1 , 0.9 ]], dtype=float32), obs_mat=DeviceArray([[0.16666667, 0.16666667, 0.16666667, 0.16666667, 0.16666667,
0.16666667],
[0.1 , 0.1 , 0.1 , 0.1 , 0.1 ,
0.5 ]], dtype=float32), init_dist=DeviceArray([0.5, 0.5], dtype=float32))
<class 'jaxlib.xla_extension.DeviceArray'>
Sampling from the joint¶
Let’s write code to sample from this model.
Numpy version¶
First we code it in numpy using a for loop.
def hmm_sample_np(params, seq_len, random_state=0):
np.random.seed(random_state)
trans_mat, obs_mat, init_dist = params.trans_mat, params.obs_mat, params.init_dist
n_states, n_obs = obs_mat.shape
state_seq = np.zeros(seq_len, dtype=int)
obs_seq = np.zeros(seq_len, dtype=int)
for t in range(seq_len):
if t==0:
zt = np.random.choice(n_states, p=init_dist)
else:
zt = np.random.choice(n_states, p=trans_mat[zt])
yt = np.random.choice(n_obs, p=obs_mat[zt])
state_seq[t] = zt
obs_seq[t] = yt
return state_seq, obs_seq
seq_len = 100
state_seq, obs_seq = hmm_sample_np(params_np, seq_len, random_state=1)
print(state_seq)
print(obs_seq)
[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[4 1 0 2 3 4 5 4 3 1 5 4 5 0 5 2 5 3 5 4 5 5 4 2 1 4 1 0 0 4 2 2 3 3 3 0 4
0 2 4 3 2 5 5 3 5 3 1 3 3 3 2 3 5 5 0 4 4 5 0 0 1 3 5 1 5 0 1 2 4 0 0 0 4
0 5 1 4 3 5 4 5 0 2 3 5 2 4 1 2 1 0 4 3 5 0 4 5 1 5]
JAX version¶
Now let’s write a JAX version using jax.lax.scan (for the inter-dependent states) and vmap (for the observations). This is harder to read than the numpy version, but faster.
#@partial(jit, static_argnums=(1,))
def markov_chain_sample(rng_key, init_dist, trans_mat, seq_len):
n_states = len(init_dist)
def draw_state(prev_state, key):
state = jax.random.choice(key, n_states, p=trans_mat[prev_state])
return state, state
rng_key, rng_state = jax.random.split(rng_key, 2)
keys = jax.random.split(rng_state, seq_len - 1)
initial_state = jax.random.choice(rng_key, n_states, p=init_dist)
final_state, states = jax.lax.scan(draw_state, initial_state, keys)
state_seq = jnp.append(jnp.array([initial_state]), states)
return state_seq
#@partial(jit, static_argnums=(1,))
def hmm_sample(rng_key, params, seq_len):
trans_mat, obs_mat, init_dist = params.trans_mat, params.obs_mat, params.init_dist
n_states, n_obs = obs_mat.shape
rng_key, rng_obs = jax.random.split(rng_key, 2)
state_seq = markov_chain_sample(rng_key, init_dist, trans_mat, seq_len)
def draw_obs(z, key):
obs = jax.random.choice(key, n_obs, p=obs_mat[z])
return obs
keys = jax.random.split(rng_obs, seq_len)
obs_seq = jax.vmap(draw_obs, in_axes=(0, 0))(state_seq, keys)
return state_seq, obs_seq
#@partial(jit, static_argnums=(1,))
def hmm_sample2(rng_key, params, seq_len):
trans_mat, obs_mat, init_dist = params.trans_mat, params.obs_mat, params.init_dist
n_states, n_obs = obs_mat.shape
def draw_state(prev_state, key):
state = jax.random.choice(key, n_states, p=trans_mat[prev_state])
return state, state
rng_key, rng_state, rng_obs = jax.random.split(rng_key, 3)
keys = jax.random.split(rng_state, seq_len - 1)
initial_state = jax.random.choice(rng_key, n_states, p=init_dist)
final_state, states = jax.lax.scan(draw_state, initial_state, keys)
state_seq = jnp.append(jnp.array([initial_state]), states)
def draw_obs(z, key):
obs = jax.random.choice(key, n_obs, p=obs_mat[z])
return obs
keys = jax.random.split(rng_obs, seq_len)
obs_seq = jax.vmap(draw_obs, in_axes=(0, 0))(state_seq, keys)
return state_seq, obs_seq
key = PRNGKey(2)
seq_len = 100
state_seq, obs_seq = hmm_sample(key, params, seq_len)
print(state_seq)
print(obs_seq)
[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[5 5 2 2 0 0 0 1 3 3 2 2 5 1 5 1 0 2 2 4 2 5 1 5 5 0 0 4 2 4 3 2 3 4 1 0 5
2 2 2 1 4 3 2 2 2 4 1 0 3 5 2 5 1 4 2 5 2 5 0 5 4 4 4 2 2 0 4 5 2 2 0 1 5
1 3 4 5 1 5 0 5 1 5 1 2 4 5 3 4 5 4 0 4 0 2 4 5 3 3]
Check correctness by computing empirical pairwise statistics¶
We will compute the number of i->j transitions, and check that it is close to the true A[i,j] transition probabilites.
import collections
def compute_counts(state_seq, nstates):
wseq = np.array(state_seq)
word_pairs = [pair for pair in zip(wseq[:-1], wseq[1:])]
counter_pairs = collections.Counter(word_pairs)
counts = np.zeros((nstates, nstates))
for (k,v) in counter_pairs.items():
counts[k[0], k[1]] = v
return counts
def normalize_counts(counts):
ncounts = vmap(lambda v: normalize(v)[0], in_axes=0)(counts)
return ncounts
init_dist = jnp.array([1.0, 0.0])
trans_mat = jnp.array([[0.7, 0.3], [0.5, 0.5]])
rng_key = jax.random.PRNGKey(0)
seq_len = 500
state_seq = markov_chain_sample(rng_key, init_dist, trans_mat, seq_len)
print(state_seq)
counts = compute_counts(state_seq, nstates=2)
print(counts)
trans_mat_empirical = normalize_counts(counts)
print(trans_mat_empirical)
assert jnp.allclose(trans_mat, trans_mat_empirical, atol=1e-1)
[0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0
0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0
0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1
1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1
1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1]
[[244. 93.]
[ 92. 70.]]
[[0.7240356 0.27596438]
[0.56790125 0.43209878]]