#!/usr/bin/env python # coding: utf-8 # (sec:hmm-intro)= # # Hidden Markov Models # # In this section, we discuss the # hidden Markov model or HMM, # which is a state space model in which the hidden states # are discrete, so $\hidden_t \in \{1,\ldots, \nstates\}$. # The observations may be discrete, # $\obs_t \in \{1,\ldots, \nsymbols\}$, # or continuous, # $\obs_t \in \real^\nstates$, # or some combination, # as we illustrate below. # More details can be found in e.g., # {cite}`Rabiner89,Fraser08,Cappe05`. # For an interactive introduction, # see https://nipunbatra.github.io/hmm/. # In[1]: { "tags": [ "hide-cell" ] } ### Import standard libraries import abc from dataclasses import dataclass import functools from functools import partial import itertools import matplotlib.pyplot as plt import numpy as np from typing import Any, Callable, NamedTuple, Optional, Union, Tuple import jax import jax.numpy as jnp from jax import lax, vmap, jit, grad #from jax.scipy.special import logit #from jax.nn import softmax import jax.random as jr import distrax import optax import jsl import ssm_jax import inspect import inspect as py_inspect import rich from rich import inspect as r_inspect from rich import print as r_print def print_source(fname): r_print(py_inspect.getsource(fname)) # (sec:casino)= # ### Example: Casino HMM # # To illustrate HMMs with categorical observation model, # we consider the "Ocassionally dishonest casino" model from {cite}`Durbin98`. # There are 2 hidden states, representing whether the dice being used in the casino is fair or loaded. # Each state defines a distribution over the 6 possible observations. # # The transition model is denoted by # ```{math} # p(\hidden_t=j|\hidden_{t-1}=i) = \hmmTransScalar_{ij} # ``` # Here the $i$'th row of $\hmmTrans$ corresponds to the outgoing distribution from state $i$. # This is a row stochastic matrix, # meaning each row sums to one. # We can visualize # the non-zero entries in the transition matrix by creating a state transition diagram, # as shown in # {numref}`fig:casino`. # # ```{figure} /figures/casino.png # :scale: 50% # :name: fig:casino # # Illustration of the casino HMM. # ``` # # The observation model # $p(\obs_t|\hidden_t=j)$ has the form # ```{math} # p(\obs_t=k|\hidden_t=j) = \hmmObsScalar_{jk} # ``` # This is represented by the histograms associated with each # state in {numref}`fig:casino`. # # Finally, # the initial state distribution is denoted by # ```{math} # p(\hidden_1=j) = \hmmInitScalar_j # ``` # # Collectively we denote all the parameters by $\params=(\hmmTrans, \hmmObs, \hmmInit)$. # # Now let us implement this model in code. # In[2]: # state transition matrix A = np.array([ [0.95, 0.05], [0.10, 0.90] ]) # observation matrix B = np.array([ [1/6, 1/6, 1/6, 1/6, 1/6, 1/6], # fair die [1/10, 1/10, 1/10, 1/10, 1/10, 5/10] # loaded die ]) pi = np.array([0.5, 0.5]) (nstates, nobs) = np.shape(B) # In[3]: import distrax from distrax import HMM hmm = HMM(trans_dist=distrax.Categorical(probs=A), init_dist=distrax.Categorical(probs=pi), obs_dist=distrax.Categorical(probs=B)) print(hmm) # # Let's sample from the model. We will generate a sequence of latent states, $\hidden_{1:T}$, # which we then convert to a sequence of observations, $\obs_{1:T}$. # In[4]: seed = 314 n_samples = 300 z_hist, x_hist = hmm.sample(seed=jr.PRNGKey(seed), seq_len=n_samples) z_hist_str = "".join((np.array(z_hist) + 1).astype(str))[:60] x_hist_str = "".join((np.array(x_hist) + 1).astype(str))[:60] print("Printing sample observed/latent...") print(f"x: {x_hist_str}") print(f"z: {z_hist_str}") # Below is the source code for the sampling algorithm. # # # In[5]: print_source(hmm.sample) # Let us check correctness by computing empirical pairwise statistics # # We will compute the number of i->j latent state transitions, and check that it is close to the true # A[i,j] transition probabilites. # In[6]: import collections def compute_counts(state_seq, nstates): wseq = np.array(state_seq) word_pairs = [pair for pair in zip(wseq[:-1], wseq[1:])] counter_pairs = collections.Counter(word_pairs) counts = np.zeros((nstates, nstates)) for (k,v) in counter_pairs.items(): counts[k[0], k[1]] = v return counts def normalize(u, axis=0, eps=1e-15): u = jnp.where(u == 0, 0, jnp.where(u < eps, eps, u)) c = u.sum(axis=axis) c = jnp.where(c == 0, 1, c) return u / c, c def normalize_counts(counts): ncounts = vmap(lambda v: normalize(v)[0], in_axes=0)(counts) return ncounts init_dist = jnp.array([1.0, 0.0]) trans_mat = jnp.array([[0.7, 0.3], [0.5, 0.5]]) obs_mat = jnp.eye(2) hmm = HMM(trans_dist=distrax.Categorical(probs=trans_mat), init_dist=distrax.Categorical(probs=init_dist), obs_dist=distrax.Categorical(probs=obs_mat)) rng_key = jax.random.PRNGKey(0) seq_len = 500 state_seq, _ = hmm.sample(seed=PRNGKey(seed), seq_len=seq_len) counts = compute_counts(state_seq, nstates=2) print(counts) trans_mat_empirical = normalize_counts(counts) print(trans_mat_empirical) assert jnp.allclose(trans_mat, trans_mat_empirical, atol=1e-1) # Our primary goal will be to infer the latent state from the observations, # so we can detect if the casino is being dishonest or not. This will # affect how we choose to gamble our money. # We discuss various ways to perform this inference below. # (sec:lillypad)= # ## Example: Lillypad HMM # # # If $\obs_t$ is continuous, it is common to use a Gaussian # observation model: # ```{math} # p(\obs_t|\hidden_t=j) = \gauss(\obs_t|\vmu_j,\vSigma_j) # ``` # This is sometimes called a Gaussian HMM. # # As a simple example, suppose we have an HMM with 3 hidden states, # each of which generates a 2d Gaussian. # We can represent these Gaussian distributions are 2d ellipses, # as we show below. # We call these ``lilly pads'', because of their shape. # We can imagine a frog hopping from one lilly pad to another. # (This analogy is due to the late Sam Roweis.) # The frog will stay on a pad for a while (corresponding to remaining in the same # discrete state $\hidden_t$), and then jump to a new pad # (corresponding to a transition to a new state). # The data we see are just the 2d points (e.g., water droplets) # coming from near the pad that the frog is currently on. # Thus this model is like a Gaussian mixture model, # in that it generates clusters of observations, # except now there is temporal correlation between the data points. # # Let us now illustrate this model in code. # # # In[19]: # Let us create the model initial_probs = jnp.array([0.3, 0.2, 0.5]) # transition matrix A = jnp.array([ [0.3, 0.4, 0.3], [0.1, 0.6, 0.3], [0.2, 0.3, 0.5] ]) # Observation model mu_collection = jnp.array([ [0.3, 0.3], [0.8, 0.5], [0.3, 0.8] ]) S1 = jnp.array([[1.1, 0], [0, 0.3]]) S2 = jnp.array([[0.3, -0.5], [-0.5, 1.3]]) S3 = jnp.array([[0.8, 0.4], [0.4, 0.5]]) cov_collection = jnp.array([S1, S2, S3]) / 60 import tensorflow_probability as tfp if False: hmm = HMM(trans_dist=distrax.Categorical(probs=A), init_dist=distrax.Categorical(probs=initial_probs), obs_dist=distrax.MultivariateNormalFullCovariance( loc=mu_collection, covariance_matrix=cov_collection)) else: hmm = HMM(trans_dist=distrax.Categorical(probs=A), init_dist=distrax.Categorical(probs=initial_probs), obs_dist=distrax.as_distribution( tfp.substrates.jax.distributions.MultivariateNormalFullCovariance(loc=mu_collection, covariance_matrix=cov_collection))) print(hmm) # In[22]: n_samples, seed = 50, 10 samples_state, samples_obs = hmm.sample(seed=PRNGKey(seed), seq_len=n_samples) print(samples_state.shape) print(samples_obs.shape) # In[25]: # Let's plot the observed data in 2d xmin, xmax = 0, 1 ymin, ymax = 0, 1.2 colors = ["tab:green", "tab:blue", "tab:red"] def plot_2dhmm(hmm, samples_obs, samples_state, colors, ax, xmin, xmax, ymin, ymax, step=1e-2): obs_dist = hmm.obs_dist color_sample = [colors[i] for i in samples_state] xs = jnp.arange(xmin, xmax, step) ys = jnp.arange(ymin, ymax, step) v_prob = vmap(lambda x, y: obs_dist.prob(jnp.array([x, y])), in_axes=(None, 0)) z = vmap(v_prob, in_axes=(0, None))(xs, ys) grid = np.mgrid[xmin:xmax:step, ymin:ymax:step] for k, color in enumerate(colors): ax.contour(*grid, z[:, :, k], levels=[1], colors=color, linewidths=3) ax.text(*(obs_dist.mean()[k] + 0.13), f"$k$={k + 1}", fontsize=13, horizontalalignment="right") ax.plot(*samples_obs.T, c="black", alpha=0.3, zorder=1) ax.scatter(*samples_obs.T, c=color_sample, s=30, zorder=2, alpha=0.8) return ax, color_sample fig, ax = plt.subplots() _, color_sample = plot_2dhmm(hmm, samples_obs, samples_state, colors, ax, xmin, xmax, ymin, ymax) # In[26]: # Let's plot the hidden state sequence fig, ax = plt.subplots() ax.step(range(n_samples), samples_state, where="post", c="black", linewidth=1, alpha=0.3) ax.scatter(range(n_samples), samples_state, c=color_sample, zorder=3)