#!/usr/bin/env python # coding: utf-8 # In[1]: # meta-data does not work yet in VScode # https://github.com/microsoft/vscode-jupyter/issues/1121 { "tags": [ "hide-cell" ] } ### Install necessary libraries try: import jax except: # For cuda version, see https://github.com/google/jax#installation get_ipython().run_line_magic('pip', 'install --upgrade "jax[cpu]"') import jax try: import distrax except: get_ipython().run_line_magic('pip', 'install --upgrade distrax') import distrax try: import jsl except: get_ipython().run_line_magic('pip', 'install git+https://github.com/probml/jsl') import jsl try: import rich except: get_ipython().run_line_magic('pip', 'install rich') import rich # In[2]: { "tags": [ "hide-cell" ] } ### Import standard libraries import abc from dataclasses import dataclass import functools import itertools from typing import Any, Callable, NamedTuple, Optional, Union, Tuple import matplotlib.pyplot as plt import numpy as np import jax import jax.numpy as jnp from jax import lax, vmap, jit, grad from jax.scipy.special import logit from jax.nn import softmax from functools import partial from jax.random import PRNGKey, split import inspect import inspect as py_inspect import rich from rich import inspect as r_inspect from rich import print as r_print def print_source(fname): r_print(py_inspect.getsource(fname)) # (sec:nlds-intro)= # # Nonlinear Gaussian SSMs # # In this section, we consider SSMs in which the dynamics and/or observation models are nonlinear, # but the process noise and observation noise are Gaussian. # That is, # \begin{align} # \hidden_t &= \dynamicsFn(\hidden_{t-1}, \inputs_t) + \transNoise_t \\ # \obs_t &= \obsFn(\hidden_{t}, \inputs_t) + \obsNoise_t # \end{align} # where $\transNoise_t \sim \gauss(\vzero,\transCov)$ # and $\obsNoise_t \sim \gauss(\vzero,\obsCov)$. # This is a very widely used model class. We give some examples below. # (sec:pendulum)= # ## Example: tracking a 1d pendulum # # ```{figure} /figures/pendulum.png # :scale: 50% # :name: fig:pendulum # # Illustration of a pendulum swinging. # $g$ is the force of gravity, # $w(t)$ is a random external force, # and $\alpha$ is the angle wrt the vertical. # Based on {cite}`Sarkka13` fig 3.10. # ``` # # # % Sarka p45, p74 # Consider a simple pendulum of unit mass and length swinging from # a fixed attachment, as in # {numref}`fig:pendulum`. # Such an object is in principle entirely deterministic in its behavior. # However, in the real world, there are often unknown forces at work # (e.g., air turbulence, friction). # We will model these by a continuous time random Gaussian noise process $w(t)$. # This gives rise to the following differential equation: # \begin{align} # \frac{d^2 \alpha}{d t^2} # = -g \sin(\alpha) + w(t) # \end{align} # We can write this as a nonlinear SSM by defining the state to be # $\hidden_1(t) = \alpha(t)$ and $\hidden_2(t) = d\alpha(t)/dt$. # Thus # \begin{align} # \frac{d \hidden}{dt} # = \begin{pmatrix} \hiddenScalar_2 \\ -g \sin(\hiddenScalar_1) \end{pmatrix} # + \begin{pmatrix} 0 \\ 1 \end{pmatrix} w(t) # \end{align} # If we discretize this step size $\Delta$, # we get the following # formulation {cite}`Sarkka13` p74: # \begin{align} # \underbrace{ # \begin{pmatrix} \hiddenScalar_{1,t} \\ \hiddenScalar_{2,t} \end{pmatrix} # }_{\hidden_t} # = # \underbrace{ # \begin{pmatrix} \hiddenScalar_{1,t-1} + \hiddenScalar_{2,t-1} \Delta \\ # \hiddenScalar_{2,t-1} -g \sin(\hiddenScalar_{1,t-1}) \Delta \end{pmatrix} # }_{\dynamicsFn(\hidden_{t-1})} # +\transNoise_{t-1} # \end{align} # where $\transNoise_{t-1} \sim \gauss(\vzero,\transCov)$ with # \begin{align} # \transCov = q^c \begin{pmatrix} # \frac{\Delta^3}{3} & \frac{\Delta^2}{2} \\ # \frac{\Delta^2}{2} & \Delta # \end{pmatrix} # \end{align} # where $q^c$ is the spectral density (continuous time variance) # of the continuous-time noise process. # # # If we observe the angular position, we # get the linear observation model # $\obsFn(\hidden_t) = \alpha_t = \hiddenScalar_{1,t}$. # If we only observe the horizontal position, # we get the nonlinear observation model # $\obsFn(\hidden_t) = \sin(\alpha_t) = \sin(\hiddenScalar_{1,t})$. # # # # # #