bib.html 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>Bibliography &#8212; State Space Models: A Modern Approach</title>
  7. <link href="_static/css/theme.css" rel="stylesheet">
  8. <link href="_static/css/index.ff1ffe594081f20da1ef19478df9384b.css" rel="stylesheet">
  9. <link rel="stylesheet"
  10. href="_static/vendor/fontawesome/5.13.0/css/all.min.css">
  11. <link rel="preload" as="font" type="font/woff2" crossorigin
  12. href="_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
  13. <link rel="preload" as="font" type="font/woff2" crossorigin
  14. href="_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
  15. <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
  16. <link rel="stylesheet" type="text/css" href="_static/sphinx-book-theme.css?digest=c3fdc42140077d1ad13ad2f1588a4309" />
  17. <link rel="stylesheet" type="text/css" href="_static/togglebutton.css" />
  18. <link rel="stylesheet" type="text/css" href="_static/copybutton.css" />
  19. <link rel="stylesheet" type="text/css" href="_static/mystnb.css" />
  20. <link rel="stylesheet" type="text/css" href="_static/sphinx-thebe.css" />
  21. <link rel="stylesheet" type="text/css" href="_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" />
  22. <link rel="stylesheet" type="text/css" href="_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" />
  23. <link rel="preload" as="script" href="_static/js/index.be7d3bbb2ef33a8344ce.js">
  24. <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
  25. <script src="_static/jquery.js"></script>
  26. <script src="_static/underscore.js"></script>
  27. <script src="_static/doctools.js"></script>
  28. <script src="_static/clipboard.min.js"></script>
  29. <script src="_static/copybutton.js"></script>
  30. <script>let toggleHintShow = 'Click to show';</script>
  31. <script>let toggleHintHide = 'Click to hide';</script>
  32. <script>let toggleOpenOnPrint = 'true';</script>
  33. <script src="_static/togglebutton.js"></script>
  34. <script>var togglebuttonSelector = '.toggle, .admonition.dropdown, .tag_hide_input div.cell_input, .tag_hide-input div.cell_input, .tag_hide_output div.cell_output, .tag_hide-output div.cell_output, .tag_hide_cell.cell, .tag_hide-cell.cell';</script>
  35. <script src="_static/sphinx-book-theme.d59cb220de22ca1c485ebbdc042f0030.js"></script>
  36. <script>const THEBE_JS_URL = "https://unpkg.com/thebe@0.8.2/lib/index.js"
  37. const thebe_selector = ".thebe,.cell"
  38. const thebe_selector_input = "pre"
  39. const thebe_selector_output = ".output, .cell_output"
  40. </script>
  41. <script async="async" src="_static/sphinx-thebe.js"></script>
  42. <link rel="index" title="Index" href="genindex.html" />
  43. <link rel="search" title="Search" href="search.html" />
  44. <link rel="prev" title="Optimal control" href="chapters/control/control_index.html" />
  45. <meta name="viewport" content="width=device-width, initial-scale=1" />
  46. <meta name="docsearch:language" content="None">
  47. <!-- Google Analytics -->
  48. </head>
  49. <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
  50. <div class="container-fluid" id="banner"></div>
  51. <div class="container-xl">
  52. <div class="row">
  53. <div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
  54. <div class="navbar-brand-box">
  55. <a class="navbar-brand text-wrap" href="index.html">
  56. <h1 class="site-logo" id="site-title">State Space Models: A Modern Approach</h1>
  57. </a>
  58. </div><form class="bd-search d-flex align-items-center" action="search.html" method="get">
  59. <i class="icon fas fa-search"></i>
  60. <input type="search" class="form-control" name="q" id="search-input" placeholder="Search this book..." aria-label="Search this book..." autocomplete="off" >
  61. </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
  62. <div class="bd-toc-item active">
  63. <ul class="nav bd-sidenav">
  64. <li class="toctree-l1">
  65. <a class="reference internal" href="root.html">
  66. State Space Models: A Modern Approach
  67. </a>
  68. </li>
  69. </ul>
  70. <ul class="current nav bd-sidenav">
  71. <li class="toctree-l1">
  72. <a class="reference internal" href="chapters/scratch.html">
  73. Scratchpad
  74. </a>
  75. </li>
  76. <li class="toctree-l1 has-children">
  77. <a class="reference internal" href="chapters/ssm/ssm_index.html">
  78. Introduction
  79. </a>
  80. <input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/>
  81. <label for="toctree-checkbox-1">
  82. <i class="fas fa-chevron-down">
  83. </i>
  84. </label>
  85. <ul>
  86. <li class="toctree-l2">
  87. <a class="reference internal" href="chapters/ssm/hmm.html">
  88. Hidden Markov Models
  89. </a>
  90. </li>
  91. <li class="toctree-l2">
  92. <a class="reference internal" href="chapters/ssm/hsmm.html">
  93. Hidden Semi-Markov Models
  94. </a>
  95. </li>
  96. <li class="toctree-l2">
  97. <a class="reference internal" href="chapters/ssm/lgssm.html">
  98. Linear Gaussian SSMs
  99. </a>
  100. </li>
  101. <li class="toctree-l2">
  102. <a class="reference internal" href="chapters/ssm/nonlin.html">
  103. Non-Linear Gaussian SSMs
  104. </a>
  105. </li>
  106. <li class="toctree-l2">
  107. <a class="reference internal" href="chapters/ssm/nongauss.html">
  108. Non-Gaussian SSMs
  109. </a>
  110. </li>
  111. <li class="toctree-l2">
  112. <a class="reference internal" href="chapters/ssm/switching.html">
  113. Switching SSMs
  114. </a>
  115. </li>
  116. <li class="toctree-l2">
  117. <a class="reference internal" href="chapters/ssm/deep.html">
  118. Deep SSMs
  119. </a>
  120. </li>
  121. <li class="toctree-l2">
  122. <a class="reference internal" href="chapters/ssm/rnn.html">
  123. Recurrent Neural Networks
  124. </a>
  125. </li>
  126. </ul>
  127. </li>
  128. <li class="toctree-l1 has-children">
  129. <a class="reference internal" href="chapters/hmm/hmm_index.html">
  130. Inference in discrete SSMs
  131. </a>
  132. <input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/>
  133. <label for="toctree-checkbox-2">
  134. <i class="fas fa-chevron-down">
  135. </i>
  136. </label>
  137. <ul>
  138. <li class="toctree-l2">
  139. <a class="reference internal" href="chapters/hmm/hmm_filter.html">
  140. HMM filtering (forwards algorithm)
  141. </a>
  142. </li>
  143. <li class="toctree-l2">
  144. <a class="reference internal" href="chapters/hmm/hmm_smoother.html">
  145. HMM smoothing (forwards-backwards algorithm)
  146. </a>
  147. </li>
  148. <li class="toctree-l2">
  149. <a class="reference internal" href="chapters/hmm/hmm_viterbi.html">
  150. Viterbi algorithm
  151. </a>
  152. </li>
  153. <li class="toctree-l2">
  154. <a class="reference internal" href="chapters/hmm/hmm_parallel.html">
  155. Parallel HMM smoothing
  156. </a>
  157. </li>
  158. <li class="toctree-l2">
  159. <a class="reference internal" href="chapters/hmm/hmm_sampling.html">
  160. Forwards-filtering backwards-sampling algorithm
  161. </a>
  162. </li>
  163. </ul>
  164. </li>
  165. <li class="toctree-l1 has-children">
  166. <a class="reference internal" href="chapters/lgssm/lgssm_index.html">
  167. Inference in linear-Gaussian SSMs
  168. </a>
  169. <input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/>
  170. <label for="toctree-checkbox-3">
  171. <i class="fas fa-chevron-down">
  172. </i>
  173. </label>
  174. <ul>
  175. <li class="toctree-l2">
  176. <a class="reference internal" href="chapters/lgssm/kalman_filter.html">
  177. Kalman filtering
  178. </a>
  179. </li>
  180. <li class="toctree-l2">
  181. <a class="reference internal" href="chapters/lgssm/kalman_smoother.html">
  182. Kalman (RTS) smoother
  183. </a>
  184. </li>
  185. <li class="toctree-l2">
  186. <a class="reference internal" href="chapters/lgssm/kalman_parallel.html">
  187. Parallel Kalman Smoother
  188. </a>
  189. </li>
  190. <li class="toctree-l2">
  191. <a class="reference internal" href="chapters/lgssm/kalman_sampling.html">
  192. Forwards-filtering backwards sampling
  193. </a>
  194. </li>
  195. </ul>
  196. </li>
  197. <li class="toctree-l1 has-children">
  198. <a class="reference internal" href="chapters/extended/extended_index.html">
  199. Extended (linearized) methods
  200. </a>
  201. <input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/>
  202. <label for="toctree-checkbox-4">
  203. <i class="fas fa-chevron-down">
  204. </i>
  205. </label>
  206. <ul>
  207. <li class="toctree-l2">
  208. <a class="reference internal" href="chapters/extended/extended_filter.html">
  209. Extended Kalman filtering
  210. </a>
  211. </li>
  212. <li class="toctree-l2">
  213. <a class="reference internal" href="chapters/extended/extended_smoother.html">
  214. Extended Kalman smoother
  215. </a>
  216. </li>
  217. <li class="toctree-l2">
  218. <a class="reference internal" href="chapters/extended/extended_parallel.html">
  219. Parallel extended Kalman smoothing
  220. </a>
  221. </li>
  222. </ul>
  223. </li>
  224. <li class="toctree-l1 has-children">
  225. <a class="reference internal" href="chapters/unscented/unscented_index.html">
  226. Unscented methods
  227. </a>
  228. <input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/>
  229. <label for="toctree-checkbox-5">
  230. <i class="fas fa-chevron-down">
  231. </i>
  232. </label>
  233. <ul>
  234. <li class="toctree-l2">
  235. <a class="reference internal" href="chapters/unscented/unscented_filter.html">
  236. Unscented filtering
  237. </a>
  238. </li>
  239. <li class="toctree-l2">
  240. <a class="reference internal" href="chapters/unscented/unscented_smoother.html">
  241. Unscented smoothing
  242. </a>
  243. </li>
  244. </ul>
  245. </li>
  246. <li class="toctree-l1">
  247. <a class="reference internal" href="chapters/quadrature/quadrature_index.html">
  248. Quadrature and cubature methods
  249. </a>
  250. </li>
  251. <li class="toctree-l1">
  252. <a class="reference internal" href="chapters/postlin/postlin_index.html">
  253. Posterior linearization
  254. </a>
  255. </li>
  256. <li class="toctree-l1">
  257. <a class="reference internal" href="chapters/adf/adf_index.html">
  258. Assumed Density Filtering
  259. </a>
  260. </li>
  261. <li class="toctree-l1">
  262. <a class="reference internal" href="chapters/vi/vi_index.html">
  263. Variational inference
  264. </a>
  265. </li>
  266. <li class="toctree-l1">
  267. <a class="reference internal" href="chapters/pf/pf_index.html">
  268. Particle filtering
  269. </a>
  270. </li>
  271. <li class="toctree-l1">
  272. <a class="reference internal" href="chapters/smc/smc_index.html">
  273. Sequential Monte Carlo
  274. </a>
  275. </li>
  276. <li class="toctree-l1 has-children">
  277. <a class="reference internal" href="chapters/learning/learning_index.html">
  278. Offline parameter estimation (learning)
  279. </a>
  280. <input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/>
  281. <label for="toctree-checkbox-6">
  282. <i class="fas fa-chevron-down">
  283. </i>
  284. </label>
  285. <ul>
  286. <li class="toctree-l2">
  287. <a class="reference internal" href="chapters/learning/em.html">
  288. Expectation Maximization (EM)
  289. </a>
  290. </li>
  291. <li class="toctree-l2">
  292. <a class="reference internal" href="chapters/learning/sgd.html">
  293. Stochastic Gradient Descent (SGD)
  294. </a>
  295. </li>
  296. <li class="toctree-l2">
  297. <a class="reference internal" href="chapters/learning/vb.html">
  298. Variational Bayes (VB)
  299. </a>
  300. </li>
  301. <li class="toctree-l2">
  302. <a class="reference internal" href="chapters/learning/mcmc.html">
  303. Markov Chain Monte Carlo (MCMC)
  304. </a>
  305. </li>
  306. </ul>
  307. </li>
  308. <li class="toctree-l1">
  309. <a class="reference internal" href="chapters/tracking/tracking_index.html">
  310. Multi-target tracking
  311. </a>
  312. </li>
  313. <li class="toctree-l1">
  314. <a class="reference internal" href="chapters/ensemble/ensemble_index.html">
  315. Data assimilation using Ensemble Kalman filter
  316. </a>
  317. </li>
  318. <li class="toctree-l1">
  319. <a class="reference internal" href="chapters/bnp/bnp_index.html">
  320. Bayesian non-parametric SSMs
  321. </a>
  322. </li>
  323. <li class="toctree-l1">
  324. <a class="reference internal" href="chapters/changepoint/changepoint_index.html">
  325. Changepoint detection
  326. </a>
  327. </li>
  328. <li class="toctree-l1">
  329. <a class="reference internal" href="chapters/timeseries/timeseries_index.html">
  330. Timeseries forecasting
  331. </a>
  332. </li>
  333. <li class="toctree-l1">
  334. <a class="reference internal" href="chapters/gp/gp_index.html">
  335. Markovian Gaussian processes
  336. </a>
  337. </li>
  338. <li class="toctree-l1">
  339. <a class="reference internal" href="chapters/ode/ode_index.html">
  340. Differential equations and SSMs
  341. </a>
  342. </li>
  343. <li class="toctree-l1">
  344. <a class="reference internal" href="chapters/control/control_index.html">
  345. Optimal control
  346. </a>
  347. </li>
  348. <li class="toctree-l1 current active">
  349. <a class="current reference internal" href="#">
  350. Bibliography
  351. </a>
  352. </li>
  353. </ul>
  354. </div>
  355. </nav> <!-- To handle the deprecated key -->
  356. <div class="navbar_extra_footer">
  357. Powered by <a href="https://jupyterbook.org">Jupyter Book</a>
  358. </div>
  359. </div>
  360. <main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
  361. <div class="topbar container-xl fixed-top">
  362. <div class="topbar-contents row">
  363. <div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
  364. <div class="col pl-md-4 topbar-main">
  365. <button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
  366. data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
  367. aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
  368. title="Toggle navigation" data-toggle="tooltip" data-placement="left">
  369. <i class="fas fa-bars"></i>
  370. <i class="fas fa-arrow-left"></i>
  371. <i class="fas fa-arrow-up"></i>
  372. </button>
  373. <div class="dropdown-buttons-trigger">
  374. <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
  375. class="fas fa-download"></i></button>
  376. <div class="dropdown-buttons">
  377. <!-- ipynb file if we had a myst markdown file -->
  378. <!-- Download raw file -->
  379. <a class="dropdown-buttons" href="_sources/bib.md"><button type="button"
  380. class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
  381. data-placement="left">.md</button></a>
  382. <!-- Download PDF via print -->
  383. <button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
  384. onclick="printPdf(this)" data-toggle="tooltip" data-placement="left">.pdf</button>
  385. </div>
  386. </div>
  387. <!-- Source interaction buttons -->
  388. <div class="dropdown-buttons-trigger">
  389. <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
  390. aria-label="Connect with source repository"><i class="fab fa-github"></i></button>
  391. <div class="dropdown-buttons sourcebuttons">
  392. <a class="repository-button"
  393. href="https://github.com/ssm-jax/ssm-book"><button type="button" class="btn btn-secondary topbarbtn"
  394. data-toggle="tooltip" data-placement="left" title="Source repository"><i
  395. class="fab fa-github"></i>repository</button></a>
  396. <a class="issues-button"
  397. href="https://github.com/ssm-jax/ssm-book/issues/new?title=Issue%20on%20page%20%2Fbib.html&body=Your%20issue%20content%20here."><button
  398. type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip" data-placement="left"
  399. title="Open an issue"><i class="fas fa-lightbulb"></i>open issue</button></a>
  400. </div>
  401. </div>
  402. <!-- Full screen (wrap in <a> to have style consistency -->
  403. <a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
  404. data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
  405. title="Fullscreen mode"><i
  406. class="fas fa-expand"></i></button></a>
  407. <!-- Launch buttons -->
  408. </div>
  409. <!-- Table of contents -->
  410. <div class="d-none d-md-block col-md-2 bd-toc show noprint">
  411. </div>
  412. </div>
  413. </div>
  414. <div id="main-content" class="row">
  415. <div class="col-12 col-md-9 pl-md-3 pr-md-0">
  416. <!-- Table of contents that is only displayed when printing the page -->
  417. <div id="jb-print-docs-body" class="onlyprint">
  418. <h1>Bibliography</h1>
  419. <!-- Table of contents -->
  420. <div id="print-main-content">
  421. <div id="jb-print-toc">
  422. </div>
  423. </div>
  424. </div>
  425. <div>
  426. <div class="tex2jax_ignore mathjax_ignore section" id="bibliography">
  427. <h1>Bibliography<a class="headerlink" href="#bibliography" title="Permalink to this headline">¶</a></h1>
  428. <p id="id1"><dl class="citation">
  429. <dt class="label" id="id23"><span class="brackets">AM07</span></dt>
  430. <dd><p>Ryan Prescott Adams and David J C MacKay. Bayesian online changepoint detection. <em>arxiv</em>, October 2007. URL: <a class="reference external" href="http://arxiv.org/abs/0710.3742">http://arxiv.org/abs/0710.3742</a>, <a class="reference external" href="https://arxiv.org/abs/0710.3742">arXiv:0710.3742</a>.</p>
  431. </dd>
  432. <dt class="label" id="id22"><span class="brackets">AEspanaGGB+20</span></dt>
  433. <dd><p>Diego Agudelo-España, Sebastian Gomez-Gonzalez, Stefan Bauer, Bernhard Schölkopf, and Jan Peters. Bayesian online prediction of change points. In <em>UAI</em>, volume 124 of Proceedings of Machine Learning Research, 320–329. PMLR, 2020. URL: <a class="reference external" href="http://proceedings.mlr.press/v124/agudelo-espana20a.html">http://proceedings.mlr.press/v124/agudelo-espana20a.html</a>.</p>
  434. </dd>
  435. <dt class="label" id="id19"><span class="brackets">BT12</span></dt>
  436. <dd><p>Matthew Botvinick and Marc Toussaint. Planning as inference. <em>Trends Cogn. Sci.</em>, 16(10):485–488, October 2012. URL: <a class="reference external" href="https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.pdf">https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.pdf</a>.</p>
  437. </dd>
  438. <dt class="label" id="id31"><span class="brackets">CP20</span></dt>
  439. <dd><p>Nicolas Chopin and Omiros Papaspiliopoulos. <em>An Introduction to Sequential Monte Carlo</em>. Springer, 1 edition, October 2020. URL: <a class="reference external" href="https://www.amazon.com/Introduction-Sequential-Monte-Springer-Statistics/dp/3030478440">https://www.amazon.com/Introduction-Sequential-Monte-Springer-Statistics/dp/3030478440</a>.</p>
  440. </dd>
  441. <dt class="label" id="id12"><span class="brackets">CWSchonN20</span></dt>
  442. <dd><p>Jarrad Courts, Adrian Wills, Thomas Schön, and Brett Ninness. Variational system identification for nonlinear State-Space models. <em>arxiv</em>, December 2020. URL: <a class="reference external" href="http://arxiv.org/abs/2012.05072">http://arxiv.org/abs/2012.05072</a>, <a class="reference external" href="https://arxiv.org/abs/2012.05072">arXiv:2012.05072</a>.</p>
  443. </dd>
  444. <dt class="label" id="id13"><span class="brackets">CWSchon21</span></dt>
  445. <dd><p>Jarrad Courts, Adrian G Wills, and Thomas B Schön. Gaussian variational state estimation for nonlinear State-Space models. <em>IEEE Trans. Signal Process.</em>, 69:5979–5993, 2021. URL: <a class="reference external" href="https://arxiv.org/abs/2002.02620">https://arxiv.org/abs/2002.02620</a>.</p>
  446. </dd>
  447. <dt class="label" id="id3"><span class="brackets">DEKM98</span></dt>
  448. <dd><p>R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. <em>Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids</em>. Cambridge University Press, 1998.</p>
  449. </dd>
  450. <dt class="label" id="id4"><span class="brackets">Eve09</span></dt>
  451. <dd><p>Geir Evensen. <em>Data Assimilation: The Ensemble Kalman Filter</em>. Springer, 2nd ed. 2009 edition edition, August 2009. URL: <a class="reference external" href="https://www.amazon.com/Data-Assimilation-Ensemble-Kalman-Filter/dp/3642037100">https://www.amazon.com/Data-Assimilation-Ensemble-Kalman-Filter/dp/3642037100</a>.</p>
  452. </dd>
  453. <dt class="label" id="id26"><span class="brackets">FL07</span></dt>
  454. <dd><p>P. Fearnhead and Z. Liu. Online inference for multiple changepoint problems. <em>J. of Royal Stat. Soc. Series B</em>, 69:589–605, 2007.</p>
  455. </dd>
  456. <dt class="label" id="id24"><span class="brackets">Fea04</span></dt>
  457. <dd><p>Paul Fearnhead. Exact bayesian curve fitting and signal segmentation. <em>IEEE Trans. Signal Processing</em>, 53:2160–2166, 2004. URL: <a class="reference external" href="http://www.maths.lancs.ac.uk/~fearnhea/software/ARPS.html">http://www.maths.lancs.ac.uk/~fearnhea/software/ARPS.html</a>.</p>
  458. </dd>
  459. <dt class="label" id="id25"><span class="brackets">Fea06</span></dt>
  460. <dd><p>Paul Fearnhead. Exact and efficient bayesian inference for multiple changepoint problems. <em>Statistics and computing</em>, 16:203–213, 2006.</p>
  461. </dd>
  462. <dt class="label" id="id27"><span class="brackets">FL11</span></dt>
  463. <dd><p>Paul Fearnhead and Zhen Liu. Efficient bayesian analysis of multiple changepoint models with dependence across segments. <em>Statistics and Computing</em>, 21(2):217–229, 2011. URL: <a class="reference external" href="https://eprints.lancs.ac.uk/id/eprint/26279/">https://eprints.lancs.ac.uk/id/eprint/26279/</a>.</p>
  464. </dd>
  465. <dt class="label" id="id9"><span class="brackets">GarciaFernandezSSarkka17</span></dt>
  466. <dd><p>Ángel F García-Fernández, Lennart Svensson, and Simo Särkkä. Iterated posterior linearization smoother. <em>IEEE Trans. Automat. Contr.</em>, 62(4):2056–2063, April 2017. URL: <a class="reference external" href="https://web.archive.org/web/20200506190022id_/https://research.chalmers.se/publication/249335/file/249335_Fulltext.pdf">https://web.archive.org/web/20200506190022id_/https://research.chalmers.se/publication/249335/file/249335_Fulltext.pdf</a>.</p>
  467. </dd>
  468. <dt class="label" id="id11"><span class="brackets">GarciaFernandezTSarkka19</span></dt>
  469. <dd><p>Ángel F García-Fernández, Filip Tronarp, and Simo Särkkä. Gaussian process classification using posterior linearization. <em>IEEE Signal Process. Lett.</em>, 26(5):735–739, May 2019. URL: <a class="reference external" href="http://dx.doi.org/10.1109/LSP.2019.2906929">http://dx.doi.org/10.1109/LSP.2019.2906929</a>.</p>
  470. </dd>
  471. <dt class="label" id="id8"><span class="brackets">GH96</span></dt>
  472. <dd><p>Z. Ghahramani and G. Hinton. Parameter estimation for linear dynamical systems. Technical Report CRG-TR-96-2, Dept. Comp. Sci., Univ. Toronto, 1996. URL: <a class="reference external" href="http://www.gatsby.ucl.ac.uk/~zoubin/papers/tr-96-2.ps.gz">http://www.gatsby.ucl.ac.uk/~zoubin/papers/tr-96-2.ps.gz</a>.</p>
  473. </dd>
  474. <dt class="label" id="id7"><span class="brackets">HSarkkaGarciaFernandez21</span></dt>
  475. <dd><p>Sakira Hassan, Simo Särkkä, and Ángel F García-Fernández. Temporal parallelization of inference in hidden markov models. <em>IEEE Trans. Signal Processing</em>, 69:4875–4887, February 2021. URL: <a class="reference external" href="http://arxiv.org/abs/2102.05743">http://arxiv.org/abs/2102.05743</a>.</p>
  476. </dd>
  477. <dt class="label" id="id30"><span class="brackets">HKO23</span></dt>
  478. <dd><p>P. Hennig, H. Kersting, and M. Osborne. <em>Probabilistic Numerics: Computation as Machine Learning</em>. 2023. URL: <a class="reference external" href="https://www.probabilistic-numerics.org/textbooks/">https://www.probabilistic-numerics.org/textbooks/</a>.</p>
  479. </dd>
  480. <dt class="label" id="id20"><span class="brackets">KGomezO12</span></dt>
  481. <dd><p>Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical model inference problem. <em>Mach. Learn.</em>, 87(2):159–182, May 2012. URL: <a class="reference external" href="https://doi.org/10.1007/s10994-012-5278-7">https://doi.org/10.1007/s10994-012-5278-7</a>.</p>
  482. </dd>
  483. <dt class="label" id="id17"><span class="brackets">Mur23</span></dt>
  484. <dd><p>K. P. Murphy. <em>Probabilistic Machine Learning: Advanced Topics</em>. MIT Press, 2023.</p>
  485. </dd>
  486. <dt class="label" id="id21"><span class="brackets">RTV12</span></dt>
  487. <dd><p>Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforcement learning by approximate inference. In <em>Robotics: Science and Systems VIII</em>. Robotics: Science and Systems Foundation, July 2012. URL: <a class="reference external" href="https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf">https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf</a>.</p>
  488. </dd>
  489. <dt class="label" id="id5"><span class="brackets">RHFG17</span></dt>
  490. <dd><p>Michael Roth, Gustaf Hendeby, Carsten Fritsche, and Fredrik Gustafsson. The ensemble kalman filter: a signal processing perspective. <em>EURASIP J. Adv. Signal Processing</em>, 2017(1):56, August 2017. URL: <a class="reference external" href="https://doi.org/10.1186/s13634-017-0492-x">https://doi.org/10.1186/s13634-017-0492-x</a>.</p>
  491. </dd>
  492. <dt class="label" id="id18"><span class="brackets">Sar13</span></dt>
  493. <dd><p>Simo Sarkka. <em>Bayesian Filtering and Smoothing</em>. Cambridge University Press, 2013. URL: <a class="reference external" href="https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf">https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf</a>.</p>
  494. </dd>
  495. <dt class="label" id="id29"><span class="brackets">SS19</span></dt>
  496. <dd><p>Simo Sarkka and Arno Solin. <em>Applied stochastic differential equations</em>. Cambridge University Press, 2019. URL: <a class="reference external" href="https://users.aalto.fi/~asolin/sde-book/sde-book.pdf">https://users.aalto.fi/~asolin/sde-book/sde-book.pdf</a>.</p>
  497. </dd>
  498. <dt class="label" id="id6"><span class="brackets">SS20</span></dt>
  499. <dd><p>Simo Sarkka and Lennart Svensson. Levenberg-Marquardt and Line-Search extended kalman smoothers. In <em>ICASSP</em>. IEEE, May 2020. URL: <a class="reference external" href="https://users.aalto.fi/~ssarkka/pub/lm-eks-camera.pdf">https://users.aalto.fi/~ssarkka/pub/lm-eks-camera.pdf</a>.</p>
  500. </dd>
  501. <dt class="label" id="id14"><span class="brackets">SarkkaGarciaFernandez21</span></dt>
  502. <dd><p>Simo Särkkä and Ángel F García-Fernández. Temporal parallelization of bayesian filters and smoothers. <em>IEEE Trans. Automat. Contr.</em>, 2021. URL: <a class="reference external" href="http://arxiv.org/abs/1905.13002">http://arxiv.org/abs/1905.13002</a>.</p>
  503. </dd>
  504. <dt class="label" id="id10"><span class="brackets">TGarciaFernandezSarkka18</span></dt>
  505. <dd><p>Filip Tronarp, Ángel F García-Fernández, and Simo Särkkä. Iterative filtering and smoothing in nonlinear and Non-Gaussian systems using conditional moments. <em>IEEE Signal Process. Lett.</em>, 25(3):408–412, March 2018. URL: <a class="reference external" href="https://acris.aalto.fi/ws/portalfiles/portal/17669270/cm_parapub.pdf">https://acris.aalto.fi/ws/portalfiles/portal/17669270/cm_parapub.pdf</a>.</p>
  506. </dd>
  507. <dt class="label" id="id28"><span class="brackets">TKSarkkaH19</span></dt>
  508. <dd><p>Filip Tronarp, Hans Kersting, Simo Särkkä, and Philipp Hennig. Probabilistic solutions to ordinary differential equations as Non-Linear bayesian filtering: a new perspective. <em>Stat. Comput.</em>, 29:1297–1315, 2019. URL: <a class="reference external" href="http://arxiv.org/abs/1810.03440">http://arxiv.org/abs/1810.03440</a>.</p>
  509. </dd>
  510. <dt class="label" id="id15"><span class="brackets">WSarkkaS21</span></dt>
  511. <dd><p>William J Wilkinson, Simo Särkkä, and Arno Solin. Bayes-Newton methods for approximate bayesian inference with PSD guarantees. <em>arxiv</em>, November 2021. URL: <a class="reference external" href="http://arxiv.org/abs/2111.01721">http://arxiv.org/abs/2111.01721</a>, <a class="reference external" href="https://arxiv.org/abs/2111.01721">arXiv:2111.01721</a>.</p>
  512. </dd>
  513. </dl>
  514. </p>
  515. </div>
  516. <script type="text/x-thebe-config">
  517. {
  518. requestKernel: true,
  519. binderOptions: {
  520. repo: "binder-examples/jupyter-stacks-datascience",
  521. ref: "master",
  522. },
  523. codeMirrorConfig: {
  524. theme: "abcdef",
  525. mode: "python"
  526. },
  527. kernelOptions: {
  528. kernelName: "python3",
  529. path: "./."
  530. },
  531. predefinedOutput: true
  532. }
  533. </script>
  534. <script>kernelName = 'python3'</script>
  535. </div>
  536. <!-- Previous / next buttons -->
  537. <div class='prev-next-area'>
  538. <a class='left-prev' id="prev-link" href="chapters/control/control_index.html" title="previous page">
  539. <i class="fas fa-angle-left"></i>
  540. <div class="prev-next-info">
  541. <p class="prev-next-subtitle">previous</p>
  542. <p class="prev-next-title">Optimal control</p>
  543. </div>
  544. </a>
  545. </div>
  546. </div>
  547. </div>
  548. <footer class="footer">
  549. <p>
  550. By Kevin Murphy, Scott Linderman, et al.<br/>
  551. &copy; Copyright 2021.<br/>
  552. </p>
  553. </footer>
  554. </main>
  555. </div>
  556. </div>
  557. <script src="_static/js/index.be7d3bbb2ef33a8344ce.js"></script>
  558. </body>
  559. </html>