123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589 |
- <!DOCTYPE html>
- <html>
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>Bibliography — State Space Models: A Modern Approach</title>
-
- <link href="_static/css/theme.css" rel="stylesheet">
- <link href="_static/css/index.ff1ffe594081f20da1ef19478df9384b.css" rel="stylesheet">
-
- <link rel="stylesheet"
- href="_static/vendor/fontawesome/5.13.0/css/all.min.css">
- <link rel="preload" as="font" type="font/woff2" crossorigin
- href="_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
- <link rel="preload" as="font" type="font/woff2" crossorigin
- href="_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
-
-
-
- <link rel="stylesheet" type="text/css" href="_static/pygments.css" />
- <link rel="stylesheet" type="text/css" href="_static/sphinx-book-theme.css?digest=c3fdc42140077d1ad13ad2f1588a4309" />
- <link rel="stylesheet" type="text/css" href="_static/togglebutton.css" />
- <link rel="stylesheet" type="text/css" href="_static/copybutton.css" />
- <link rel="stylesheet" type="text/css" href="_static/mystnb.css" />
- <link rel="stylesheet" type="text/css" href="_static/sphinx-thebe.css" />
- <link rel="stylesheet" type="text/css" href="_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" />
- <link rel="stylesheet" type="text/css" href="_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" />
-
- <link rel="preload" as="script" href="_static/js/index.be7d3bbb2ef33a8344ce.js">
- <script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
- <script src="_static/jquery.js"></script>
- <script src="_static/underscore.js"></script>
- <script src="_static/doctools.js"></script>
- <script src="_static/clipboard.min.js"></script>
- <script src="_static/copybutton.js"></script>
- <script>let toggleHintShow = 'Click to show';</script>
- <script>let toggleHintHide = 'Click to hide';</script>
- <script>let toggleOpenOnPrint = 'true';</script>
- <script src="_static/togglebutton.js"></script>
- <script>var togglebuttonSelector = '.toggle, .admonition.dropdown, .tag_hide_input div.cell_input, .tag_hide-input div.cell_input, .tag_hide_output div.cell_output, .tag_hide-output div.cell_output, .tag_hide_cell.cell, .tag_hide-cell.cell';</script>
- <script src="_static/sphinx-book-theme.d59cb220de22ca1c485ebbdc042f0030.js"></script>
- <script>const THEBE_JS_URL = "https://unpkg.com/thebe@0.8.2/lib/index.js"
- const thebe_selector = ".thebe,.cell"
- const thebe_selector_input = "pre"
- const thebe_selector_output = ".output, .cell_output"
- </script>
- <script async="async" src="_static/sphinx-thebe.js"></script>
- <link rel="index" title="Index" href="genindex.html" />
- <link rel="search" title="Search" href="search.html" />
- <link rel="prev" title="Optimal control" href="chapters/control/control_index.html" />
- <meta name="viewport" content="width=device-width, initial-scale=1" />
- <meta name="docsearch:language" content="None">
-
- <!-- Google Analytics -->
-
- </head>
- <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
-
- <div class="container-fluid" id="banner"></div>
-
- <div class="container-xl">
- <div class="row">
-
- <div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
-
- <div class="navbar-brand-box">
- <a class="navbar-brand text-wrap" href="index.html">
-
-
-
- <h1 class="site-logo" id="site-title">State Space Models: A Modern Approach</h1>
-
- </a>
- </div><form class="bd-search d-flex align-items-center" action="search.html" method="get">
- <i class="icon fas fa-search"></i>
- <input type="search" class="form-control" name="q" id="search-input" placeholder="Search this book..." aria-label="Search this book..." autocomplete="off" >
- </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
- <div class="bd-toc-item active">
- <ul class="nav bd-sidenav">
- <li class="toctree-l1">
- <a class="reference internal" href="root.html">
- State Space Models: A Modern Approach
- </a>
- </li>
- </ul>
- <ul class="current nav bd-sidenav">
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="chapters/ssm/ssm_index.html">
- State Space Models
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/>
- <label for="toctree-checkbox-1">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/ssm/ssm_intro.html">
- What are State Space Models?
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/ssm/hmm.html">
- Hidden Markov Models
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/ssm/lds.html">
- Linear Gaussian SSMs
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/ssm/nlds.html">
- Nonlinear Gaussian SSMs
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/ssm/inference.html">
- States estimation (inference)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/ssm/learning.html">
- Parameter estimation (learning)
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="chapters/hmm/hmm_index.html">
- Hidden Markov Models
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/>
- <label for="toctree-checkbox-2">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/hmm/hmm_filter.html">
- HMM filtering (forwards algorithm)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/hmm/hmm_smoother.html">
- HMM smoothing (forwards-backwards algorithm)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/hmm/hmm_viterbi.html">
- Viterbi algorithm
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/hmm/hmm_parallel.html">
- Parallel HMM smoothing
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/hmm/hmm_sampling.html">
- Forwards-filtering backwards-sampling algorithm
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="chapters/lgssm/lgssm_index.html">
- Linear-Gaussian SSMs
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/>
- <label for="toctree-checkbox-3">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/lgssm/kalman_filter.html">
- Kalman filtering
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/lgssm/kalman_smoother.html">
- Kalman (RTS) smoother
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/lgssm/kalman_parallel.html">
- Parallel Kalman Smoother
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/lgssm/kalman_sampling.html">
- Forwards-filtering backwards sampling
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="chapters/extended/extended_index.html">
- Extended (linearized) methods
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/>
- <label for="toctree-checkbox-4">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/extended/extended_filter.html">
- Extended Kalman filtering
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/extended/extended_smoother.html">
- Extended Kalman smoother
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/extended/extended_parallel.html">
- Parallel extended Kalman smoothing
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="chapters/unscented/unscented_index.html">
- Unscented methods
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/>
- <label for="toctree-checkbox-5">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/unscented/unscented_filter.html">
- Unscented filtering
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="chapters/unscented/unscented_smoother.html">
- Unscented smoothing
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/quadrature/quadrature_index.html">
- Quadrature and cubature methods
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/postlin/postlin_index.html">
- Posterior linearization
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/adf/adf_index.html">
- Assumed Density Filtering
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/vi/vi_index.html">
- Variational inference
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/pf/pf_index.html">
- Particle filtering
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/smc/smc_index.html">
- Sequential Monte Carlo
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/learning/learning_index.html">
- Offline parameter estimation (learning)
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/tracking/tracking_index.html">
- Multi-target tracking
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/ensemble/ensemble_index.html">
- Data assimilation using Ensemble Kalman filter
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/bnp/bnp_index.html">
- Bayesian non-parametric SSMs
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/changepoint/changepoint_index.html">
- Changepoint detection
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/timeseries/timeseries_index.html">
- Timeseries forecasting
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/gp/gp_index.html">
- Markovian Gaussian processes
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/ode/ode_index.html">
- Differential equations and SSMs
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="chapters/control/control_index.html">
- Optimal control
- </a>
- </li>
- <li class="toctree-l1 current active">
- <a class="current reference internal" href="#">
- Bibliography
- </a>
- </li>
- </ul>
- </div>
- </nav> <!-- To handle the deprecated key -->
- <div class="navbar_extra_footer">
- Powered by <a href="https://jupyterbook.org">Jupyter Book</a>
- </div>
- </div>
-
-
- <main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
-
- <div class="topbar container-xl fixed-top">
- <div class="topbar-contents row">
- <div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
- <div class="col pl-md-4 topbar-main">
-
- <button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
- data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
- aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
- title="Toggle navigation" data-toggle="tooltip" data-placement="left">
- <i class="fas fa-bars"></i>
- <i class="fas fa-arrow-left"></i>
- <i class="fas fa-arrow-up"></i>
- </button>
-
-
- <div class="dropdown-buttons-trigger">
- <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
- class="fas fa-download"></i></button>
- <div class="dropdown-buttons">
- <!-- ipynb file if we had a myst markdown file -->
-
- <!-- Download raw file -->
- <a class="dropdown-buttons" href="_sources/bib.md"><button type="button"
- class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
- data-placement="left">.md</button></a>
- <!-- Download PDF via print -->
- <button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
- onclick="printPdf(this)" data-toggle="tooltip" data-placement="left">.pdf</button>
- </div>
- </div>
- <!-- Source interaction buttons -->
- <div class="dropdown-buttons-trigger">
- <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
- aria-label="Connect with source repository"><i class="fab fa-github"></i></button>
- <div class="dropdown-buttons sourcebuttons">
- <a class="repository-button"
- href="https://github.com/probml/ssm-book"><button type="button" class="btn btn-secondary topbarbtn"
- data-toggle="tooltip" data-placement="left" title="Source repository"><i
- class="fab fa-github"></i>repository</button></a>
- <a class="issues-button"
- href="https://github.com/probml/ssm-book/issues/new?title=Issue%20on%20page%20%2Fbib.html&body=Your%20issue%20content%20here."><button
- type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip" data-placement="left"
- title="Open an issue"><i class="fas fa-lightbulb"></i>open issue</button></a>
-
- </div>
- </div>
- <!-- Full screen (wrap in <a> to have style consistency -->
- <a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
- data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
- title="Fullscreen mode"><i
- class="fas fa-expand"></i></button></a>
- <!-- Launch buttons -->
- </div>
- <!-- Table of contents -->
- <div class="d-none d-md-block col-md-2 bd-toc show noprint">
-
- </div>
- </div>
- </div>
- <div id="main-content" class="row">
- <div class="col-12 col-md-9 pl-md-3 pr-md-0">
- <!-- Table of contents that is only displayed when printing the page -->
- <div id="jb-print-docs-body" class="onlyprint">
- <h1>Bibliography</h1>
- <!-- Table of contents -->
- <div id="print-main-content">
- <div id="jb-print-toc">
-
- </div>
- </div>
- </div>
-
- <div>
-
- <div class="tex2jax_ignore mathjax_ignore section" id="bibliography">
- <h1>Bibliography<a class="headerlink" href="#bibliography" title="Permalink to this headline">¶</a></h1>
- <p id="id1"><dl class="citation">
- <dt class="label" id="id23"><span class="brackets">AM07</span></dt>
- <dd><p>Ryan Prescott Adams and David J C MacKay. Bayesian online changepoint detection. <em>arxiv</em>, October 2007. URL: <a class="reference external" href="http://arxiv.org/abs/0710.3742">http://arxiv.org/abs/0710.3742</a>, <a class="reference external" href="https://arxiv.org/abs/0710.3742">arXiv:0710.3742</a>.</p>
- </dd>
- <dt class="label" id="id22"><span class="brackets">AEspanaGGB+20</span></dt>
- <dd><p>Diego Agudelo-España, Sebastian Gomez-Gonzalez, Stefan Bauer, Bernhard Schölkopf, and Jan Peters. Bayesian online prediction of change points. In <em>UAI</em>, volume 124 of Proceedings of Machine Learning Research, 320–329. PMLR, 2020. URL: <a class="reference external" href="http://proceedings.mlr.press/v124/agudelo-espana20a.html">http://proceedings.mlr.press/v124/agudelo-espana20a.html</a>.</p>
- </dd>
- <dt class="label" id="id19"><span class="brackets">BT12</span></dt>
- <dd><p>Matthew Botvinick and Marc Toussaint. Planning as inference. <em>Trends Cogn. Sci.</em>, 16(10):485–488, October 2012. URL: <a class="reference external" href="https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.pdf">https://pdfs.semanticscholar.org/2ba7/88647916f6206f7fcc137fe7866c58e6211e.pdf</a>.</p>
- </dd>
- <dt class="label" id="id34"><span class="brackets">CMR05</span></dt>
- <dd><p>O. Cappe, E. Moulines, and T. Ryden. <em>Inference in Hidden Markov Models</em>. Springer, 2005.</p>
- </dd>
- <dt class="label" id="id31"><span class="brackets">CP20</span></dt>
- <dd><p>Nicolas Chopin and Omiros Papaspiliopoulos. <em>An Introduction to Sequential Monte Carlo</em>. Springer, 1 edition, October 2020. URL: <a class="reference external" href="https://www.amazon.com/Introduction-Sequential-Monte-Springer-Statistics/dp/3030478440">https://www.amazon.com/Introduction-Sequential-Monte-Springer-Statistics/dp/3030478440</a>.</p>
- </dd>
- <dt class="label" id="id12"><span class="brackets">CWSchonN20</span></dt>
- <dd><p>Jarrad Courts, Adrian Wills, Thomas Schön, and Brett Ninness. Variational system identification for nonlinear State-Space models. <em>arxiv</em>, December 2020. URL: <a class="reference external" href="http://arxiv.org/abs/2012.05072">http://arxiv.org/abs/2012.05072</a>, <a class="reference external" href="https://arxiv.org/abs/2012.05072">arXiv:2012.05072</a>.</p>
- </dd>
- <dt class="label" id="id13"><span class="brackets">CWSchon21</span></dt>
- <dd><p>Jarrad Courts, Adrian G Wills, and Thomas B Schön. Gaussian variational state estimation for nonlinear State-Space models. <em>IEEE Trans. Signal Process.</em>, 69:5979–5993, 2021. URL: <a class="reference external" href="https://arxiv.org/abs/2002.02620">https://arxiv.org/abs/2002.02620</a>.</p>
- </dd>
- <dt class="label" id="id35"><span class="brackets">Dev85</span></dt>
- <dd><p>Pierre A Devijver. Baum's forward-backward algorithm revisited. <em>Pattern Recognition Letters</em>, 3(6):369–373, 1985.</p>
- </dd>
- <dt class="label" id="id3"><span class="brackets">DEKM98</span></dt>
- <dd><p>R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. <em>Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids</em>. Cambridge University Press, 1998.</p>
- </dd>
- <dt class="label" id="id4"><span class="brackets">Eve09</span></dt>
- <dd><p>Geir Evensen. <em>Data Assimilation: The Ensemble Kalman Filter</em>. Springer, 2nd ed. 2009 edition edition, August 2009. URL: <a class="reference external" href="https://www.amazon.com/Data-Assimilation-Ensemble-Kalman-Filter/dp/3642037100">https://www.amazon.com/Data-Assimilation-Ensemble-Kalman-Filter/dp/3642037100</a>.</p>
- </dd>
- <dt class="label" id="id26"><span class="brackets">FL07</span></dt>
- <dd><p>P. Fearnhead and Z. Liu. Online inference for multiple changepoint problems. <em>J. of Royal Stat. Soc. Series B</em>, 69:589–605, 2007.</p>
- </dd>
- <dt class="label" id="id24"><span class="brackets">Fea04</span></dt>
- <dd><p>Paul Fearnhead. Exact bayesian curve fitting and signal segmentation. <em>IEEE Trans. Signal Processing</em>, 53:2160–2166, 2004. URL: <a class="reference external" href="http://www.maths.lancs.ac.uk/~fearnhea/software/ARPS.html">http://www.maths.lancs.ac.uk/~fearnhea/software/ARPS.html</a>.</p>
- </dd>
- <dt class="label" id="id25"><span class="brackets">Fea06</span></dt>
- <dd><p>Paul Fearnhead. Exact and efficient bayesian inference for multiple changepoint problems. <em>Statistics and computing</em>, 16:203–213, 2006.</p>
- </dd>
- <dt class="label" id="id27"><span class="brackets">FL11</span></dt>
- <dd><p>Paul Fearnhead and Zhen Liu. Efficient bayesian analysis of multiple changepoint models with dependence across segments. <em>Statistics and Computing</em>, 21(2):217–229, 2011. URL: <a class="reference external" href="https://eprints.lancs.ac.uk/id/eprint/26279/">https://eprints.lancs.ac.uk/id/eprint/26279/</a>.</p>
- </dd>
- <dt class="label" id="id33"><span class="brackets">Fra08</span></dt>
- <dd><p>A. Fraser. <em>Hidden Markov Models and Dynamical Systems</em>. SIAM Press, 2008.</p>
- </dd>
- <dt class="label" id="id9"><span class="brackets">GarciaFernandezSSarkka17</span></dt>
- <dd><p>Ángel F García-Fernández, Lennart Svensson, and Simo Särkkä. Iterated posterior linearization smoother. <em>IEEE Trans. Automat. Contr.</em>, 62(4):2056–2063, April 2017. URL: <a class="reference external" href="https://web.archive.org/web/20200506190022id_/https://research.chalmers.se/publication/249335/file/249335_Fulltext.pdf">https://web.archive.org/web/20200506190022id_/https://research.chalmers.se/publication/249335/file/249335_Fulltext.pdf</a>.</p>
- </dd>
- <dt class="label" id="id11"><span class="brackets">GarciaFernandezTSarkka19</span></dt>
- <dd><p>Ángel F García-Fernández, Filip Tronarp, and Simo Särkkä. Gaussian process classification using posterior linearization. <em>IEEE Signal Process. Lett.</em>, 26(5):735–739, May 2019. URL: <a class="reference external" href="http://dx.doi.org/10.1109/LSP.2019.2906929">http://dx.doi.org/10.1109/LSP.2019.2906929</a>.</p>
- </dd>
- <dt class="label" id="id7"><span class="brackets">HSarkkaGarciaFernandez21</span></dt>
- <dd><p>Sakira Hassan, Simo Särkkä, and Ángel F García-Fernández. Temporal parallelization of inference in hidden markov models. <em>IEEE Trans. Signal Processing</em>, 69:4875–4887, February 2021. URL: <a class="reference external" href="http://arxiv.org/abs/2102.05743">http://arxiv.org/abs/2102.05743</a>.</p>
- </dd>
- <dt class="label" id="id30"><span class="brackets">HKO23</span></dt>
- <dd><p>P. Hennig, H. Kersting, and M. Osborne. <em>Probabilistic Numerics: Computation as Machine Learning</em>. 2023. URL: <a class="reference external" href="https://www.probabilistic-numerics.org/textbooks/">https://www.probabilistic-numerics.org/textbooks/</a>.</p>
- </dd>
- <dt class="label" id="id20"><span class="brackets">KGomezO12</span></dt>
- <dd><p>Hilbert J Kappen, Vicenç Gómez, and Manfred Opper. Optimal control as a graphical model inference problem. <em>Mach. Learn.</em>, 87(2):159–182, May 2012. URL: <a class="reference external" href="https://doi.org/10.1007/s10994-012-5278-7">https://doi.org/10.1007/s10994-012-5278-7</a>.</p>
- </dd>
- <dt class="label" id="id17"><span class="brackets">Mur23</span></dt>
- <dd><p>K. P. Murphy. <em>Probabilistic Machine Learning: Advanced Topics</em>. MIT Press, 2023.</p>
- </dd>
- <dt class="label" id="id32"><span class="brackets">Rab89</span></dt>
- <dd><p>L. R. Rabiner. A tutorial on Hidden Markov Models and selected applications in speech recognition. <em>Proc. of the IEEE</em>, 77(2):257–286, 1989.</p>
- </dd>
- <dt class="label" id="id21"><span class="brackets">RTV12</span></dt>
- <dd><p>Konrad Rawlik, Marc Toussaint, and Sethu Vijayakumar. On stochastic optimal control and reinforcement learning by approximate inference. In <em>Robotics: Science and Systems VIII</em>. Robotics: Science and Systems Foundation, July 2012. URL: <a class="reference external" href="https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf">https://blogs.cuit.columbia.edu/zp2130/files/2019/03/On_Stochasitc_Optimal_Control_and_Reinforcement_Learning_by_Approximate_Inference.pdf</a>.</p>
- </dd>
- <dt class="label" id="id5"><span class="brackets">RHFG17</span></dt>
- <dd><p>Michael Roth, Gustaf Hendeby, Carsten Fritsche, and Fredrik Gustafsson. The ensemble kalman filter: a signal processing perspective. <em>EURASIP J. Adv. Signal Processing</em>, 2017(1):56, August 2017. URL: <a class="reference external" href="https://doi.org/10.1186/s13634-017-0492-x">https://doi.org/10.1186/s13634-017-0492-x</a>.</p>
- </dd>
- <dt class="label" id="id18"><span class="brackets">Sar13</span></dt>
- <dd><p>Simo Sarkka. <em>Bayesian Filtering and Smoothing</em>. Cambridge University Press, 2013. URL: <a class="reference external" href="https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf">https://users.aalto.fi/~ssarkka/pub/cup_book_online_20131111.pdf</a>.</p>
- </dd>
- <dt class="label" id="id29"><span class="brackets">SS19</span></dt>
- <dd><p>Simo Sarkka and Arno Solin. <em>Applied stochastic differential equations</em>. Cambridge University Press, 2019. URL: <a class="reference external" href="https://users.aalto.fi/~asolin/sde-book/sde-book.pdf">https://users.aalto.fi/~asolin/sde-book/sde-book.pdf</a>.</p>
- </dd>
- <dt class="label" id="id6"><span class="brackets">SS20</span></dt>
- <dd><p>Simo Sarkka and Lennart Svensson. Levenberg-Marquardt and Line-Search extended kalman smoothers. In <em>ICASSP</em>. IEEE, May 2020. URL: <a class="reference external" href="https://users.aalto.fi/~ssarkka/pub/lm-eks-camera.pdf">https://users.aalto.fi/~ssarkka/pub/lm-eks-camera.pdf</a>.</p>
- </dd>
- <dt class="label" id="id14"><span class="brackets">SarkkaGarciaFernandez21</span></dt>
- <dd><p>Simo Särkkä and Ángel F García-Fernández. Temporal parallelization of bayesian filters and smoothers. <em>IEEE Trans. Automat. Contr.</em>, 2021. URL: <a class="reference external" href="http://arxiv.org/abs/1905.13002">http://arxiv.org/abs/1905.13002</a>.</p>
- </dd>
- <dt class="label" id="id10"><span class="brackets">TGarciaFernandezSarkka18</span></dt>
- <dd><p>Filip Tronarp, Ángel F García-Fernández, and Simo Särkkä. Iterative filtering and smoothing in nonlinear and Non-Gaussian systems using conditional moments. <em>IEEE Signal Process. Lett.</em>, 25(3):408–412, March 2018. URL: <a class="reference external" href="https://acris.aalto.fi/ws/portalfiles/portal/17669270/cm_parapub.pdf">https://acris.aalto.fi/ws/portalfiles/portal/17669270/cm_parapub.pdf</a>.</p>
- </dd>
- <dt class="label" id="id28"><span class="brackets">TKSarkkaH19</span></dt>
- <dd><p>Filip Tronarp, Hans Kersting, Simo Särkkä, and Philipp Hennig. Probabilistic solutions to ordinary differential equations as Non-Linear bayesian filtering: a new perspective. <em>Stat. Comput.</em>, 29:1297–1315, 2019. URL: <a class="reference external" href="http://arxiv.org/abs/1810.03440">http://arxiv.org/abs/1810.03440</a>.</p>
- </dd>
- <dt class="label" id="id15"><span class="brackets">WSarkkaS21</span></dt>
- <dd><p>William J Wilkinson, Simo Särkkä, and Arno Solin. Bayes-Newton methods for approximate bayesian inference with PSD guarantees. <em>arxiv</em>, November 2021. URL: <a class="reference external" href="http://arxiv.org/abs/2111.01721">http://arxiv.org/abs/2111.01721</a>, <a class="reference external" href="https://arxiv.org/abs/2111.01721">arXiv:2111.01721</a>.</p>
- </dd>
- </dl>
- </p>
- </div>
- <script type="text/x-thebe-config">
- {
- requestKernel: true,
- binderOptions: {
- repo: "binder-examples/jupyter-stacks-datascience",
- ref: "master",
- },
- codeMirrorConfig: {
- theme: "abcdef",
- mode: "python"
- },
- kernelOptions: {
- kernelName: "python3",
- path: "./."
- },
- predefinedOutput: true
- }
- </script>
- <script>kernelName = 'python3'</script>
- </div>
-
-
- <!-- Previous / next buttons -->
- <div class='prev-next-area'>
- <a class='left-prev' id="prev-link" href="chapters/control/control_index.html" title="previous page">
- <i class="fas fa-angle-left"></i>
- <div class="prev-next-info">
- <p class="prev-next-subtitle">previous</p>
- <p class="prev-next-title">Optimal control</p>
- </div>
- </a>
- </div>
-
- </div>
- </div>
- <footer class="footer">
- <p>
-
- By Kevin Murphy, Scott Linderman, et al.<br/>
-
- © Copyright 2021.<br/>
- </p>
- </footer>
- </main>
- </div>
- </div>
-
- <script src="_static/js/index.be7d3bbb2ef33a8344ce.js"></script>
- </body>
- </html>
|