1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006 |
- <!DOCTYPE html>
- <html>
- <head>
- <meta charset="utf-8" />
- <meta name="viewport" content="width=device-width, initial-scale=1.0" />
- <title>Hidden Markov Models — State Space Models: A Modern Approach</title>
-
- <link href="../../_static/css/theme.css" rel="stylesheet">
- <link href="../../_static/css/index.ff1ffe594081f20da1ef19478df9384b.css" rel="stylesheet">
-
- <link rel="stylesheet"
- href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
- <link rel="preload" as="font" type="font/woff2" crossorigin
- href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
- <link rel="preload" as="font" type="font/woff2" crossorigin
- href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
-
-
-
- <link rel="stylesheet" type="text/css" href="../../_static/pygments.css" />
- <link rel="stylesheet" type="text/css" href="../../_static/sphinx-book-theme.css?digest=c3fdc42140077d1ad13ad2f1588a4309" />
- <link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css" />
- <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css" />
- <link rel="stylesheet" type="text/css" href="../../_static/mystnb.css" />
- <link rel="stylesheet" type="text/css" href="../../_static/sphinx-thebe.css" />
- <link rel="stylesheet" type="text/css" href="../../_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" />
- <link rel="stylesheet" type="text/css" href="../../_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" />
-
- <link rel="preload" as="script" href="../../_static/js/index.be7d3bbb2ef33a8344ce.js">
- <script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
- <script src="../../_static/jquery.js"></script>
- <script src="../../_static/underscore.js"></script>
- <script src="../../_static/doctools.js"></script>
- <script src="../../_static/clipboard.min.js"></script>
- <script src="../../_static/copybutton.js"></script>
- <script>let toggleHintShow = 'Click to show';</script>
- <script>let toggleHintHide = 'Click to hide';</script>
- <script>let toggleOpenOnPrint = 'true';</script>
- <script src="../../_static/togglebutton.js"></script>
- <script>var togglebuttonSelector = '.toggle, .admonition.dropdown, .tag_hide_input div.cell_input, .tag_hide-input div.cell_input, .tag_hide_output div.cell_output, .tag_hide-output div.cell_output, .tag_hide_cell.cell, .tag_hide-cell.cell';</script>
- <script src="../../_static/sphinx-book-theme.d59cb220de22ca1c485ebbdc042f0030.js"></script>
- <script>const THEBE_JS_URL = "https://unpkg.com/thebe@0.8.2/lib/index.js"
- const thebe_selector = ".thebe,.cell"
- const thebe_selector_input = "pre"
- const thebe_selector_output = ".output, .cell_output"
- </script>
- <script async="async" src="../../_static/sphinx-thebe.js"></script>
- <link rel="index" title="Index" href="../../genindex.html" />
- <link rel="search" title="Search" href="../../search.html" />
- <meta name="viewport" content="width=device-width, initial-scale=1" />
- <meta name="docsearch:language" content="None">
-
- <!-- Google Analytics -->
-
- </head>
- <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
-
- <div class="container-fluid" id="banner"></div>
-
- <div class="container-xl">
- <div class="row">
-
- <div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
-
- <div class="navbar-brand-box">
- <a class="navbar-brand text-wrap" href="../../index.html">
-
-
-
- <h1 class="site-logo" id="site-title">State Space Models: A Modern Approach</h1>
-
- </a>
- </div><form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
- <i class="icon fas fa-search"></i>
- <input type="search" class="form-control" name="q" id="search-input" placeholder="Search this book..." aria-label="Search this book..." autocomplete="off" >
- </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
- <div class="bd-toc-item active">
- <ul class="nav bd-sidenav">
- <li class="toctree-l1">
- <a class="reference internal" href="../../root.html">
- State Space Models: A Modern Approach
- </a>
- </li>
- </ul>
- <ul class="nav bd-sidenav">
- <li class="toctree-l1">
- <a class="reference internal" href="../scratch.html">
- Scratchpad
- </a>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="../ssm/ssm_index.html">
- State Space Models
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/>
- <label for="toctree-checkbox-1">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="../ssm/ssm_intro.html">
- What are State Space Models?
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../ssm/hmm.html">
- Hidden Markov Models
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../ssm/lds.html">
- Linear Gaussian SSMs
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../ssm/nlds.html">
- Nonlinear Gaussian SSMs
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../ssm/inference.html">
- Inferential goals
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="hmm_index.html">
- Hidden Markov Models
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/>
- <label for="toctree-checkbox-2">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="hmm_filter.html">
- HMM filtering (forwards algorithm)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="hmm_smoother.html">
- HMM smoothing (forwards-backwards algorithm)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="hmm_viterbi.html">
- Viterbi algorithm
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="hmm_parallel.html">
- Parallel HMM smoothing
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="hmm_sampling.html">
- Forwards-filtering backwards-sampling algorithm
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="../lgssm/lgssm_index.html">
- Inference in linear-Gaussian SSMs
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/>
- <label for="toctree-checkbox-3">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="../lgssm/kalman_filter.html">
- Kalman filtering
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../lgssm/kalman_smoother.html">
- Kalman (RTS) smoother
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../lgssm/kalman_parallel.html">
- Parallel Kalman Smoother
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../lgssm/kalman_sampling.html">
- Forwards-filtering backwards sampling
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="../extended/extended_index.html">
- Extended (linearized) methods
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/>
- <label for="toctree-checkbox-4">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="../extended/extended_filter.html">
- Extended Kalman filtering
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../extended/extended_smoother.html">
- Extended Kalman smoother
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../extended/extended_parallel.html">
- Parallel extended Kalman smoothing
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="../unscented/unscented_index.html">
- Unscented methods
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/>
- <label for="toctree-checkbox-5">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="../unscented/unscented_filter.html">
- Unscented filtering
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../unscented/unscented_smoother.html">
- Unscented smoothing
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../quadrature/quadrature_index.html">
- Quadrature and cubature methods
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../postlin/postlin_index.html">
- Posterior linearization
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../adf/adf_index.html">
- Assumed Density Filtering
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../vi/vi_index.html">
- Variational inference
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../pf/pf_index.html">
- Particle filtering
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../smc/smc_index.html">
- Sequential Monte Carlo
- </a>
- </li>
- <li class="toctree-l1 has-children">
- <a class="reference internal" href="../learning/learning_index.html">
- Offline parameter estimation (learning)
- </a>
- <input class="toctree-checkbox" id="toctree-checkbox-6" name="toctree-checkbox-6" type="checkbox"/>
- <label for="toctree-checkbox-6">
- <i class="fas fa-chevron-down">
- </i>
- </label>
- <ul>
- <li class="toctree-l2">
- <a class="reference internal" href="../learning/em.html">
- Expectation Maximization (EM)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../learning/sgd.html">
- Stochastic Gradient Descent (SGD)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../learning/vb.html">
- Variational Bayes (VB)
- </a>
- </li>
- <li class="toctree-l2">
- <a class="reference internal" href="../learning/mcmc.html">
- Markov Chain Monte Carlo (MCMC)
- </a>
- </li>
- </ul>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../tracking/tracking_index.html">
- Multi-target tracking
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../ensemble/ensemble_index.html">
- Data assimilation using Ensemble Kalman filter
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../bnp/bnp_index.html">
- Bayesian non-parametric SSMs
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../changepoint/changepoint_index.html">
- Changepoint detection
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../timeseries/timeseries_index.html">
- Timeseries forecasting
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../gp/gp_index.html">
- Markovian Gaussian processes
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../ode/ode_index.html">
- Differential equations and SSMs
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../control/control_index.html">
- Optimal control
- </a>
- </li>
- <li class="toctree-l1">
- <a class="reference internal" href="../../bib.html">
- Bibliography
- </a>
- </li>
- </ul>
- </div>
- </nav> <!-- To handle the deprecated key -->
- <div class="navbar_extra_footer">
- Powered by <a href="https://jupyterbook.org">Jupyter Book</a>
- </div>
- </div>
-
-
- <main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
-
- <div class="topbar container-xl fixed-top">
- <div class="topbar-contents row">
- <div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
- <div class="col pl-md-4 topbar-main">
-
- <button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
- data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
- aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
- title="Toggle navigation" data-toggle="tooltip" data-placement="left">
- <i class="fas fa-bars"></i>
- <i class="fas fa-arrow-left"></i>
- <i class="fas fa-arrow-up"></i>
- </button>
-
-
- <div class="dropdown-buttons-trigger">
- <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
- class="fas fa-download"></i></button>
- <div class="dropdown-buttons">
- <!-- ipynb file if we had a myst markdown file -->
-
- <!-- Download raw file -->
- <a class="dropdown-buttons" href="../../_sources/chapters/hmm/hmm.ipynb"><button type="button"
- class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
- data-placement="left">.ipynb</button></a>
- <!-- Download PDF via print -->
- <button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
- onclick="printPdf(this)" data-toggle="tooltip" data-placement="left">.pdf</button>
- </div>
- </div>
- <!-- Source interaction buttons -->
- <div class="dropdown-buttons-trigger">
- <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
- aria-label="Connect with source repository"><i class="fab fa-github"></i></button>
- <div class="dropdown-buttons sourcebuttons">
- <a class="repository-button"
- href="https://github.com/probml/ssm-book"><button type="button" class="btn btn-secondary topbarbtn"
- data-toggle="tooltip" data-placement="left" title="Source repository"><i
- class="fab fa-github"></i>repository</button></a>
- <a class="issues-button"
- href="https://github.com/probml/ssm-book/issues/new?title=Issue%20on%20page%20%2Fchapters/hmm/hmm.html&body=Your%20issue%20content%20here."><button
- type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip" data-placement="left"
- title="Open an issue"><i class="fas fa-lightbulb"></i>open issue</button></a>
-
- </div>
- </div>
- <!-- Full screen (wrap in <a> to have style consistency -->
- <a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
- data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
- title="Fullscreen mode"><i
- class="fas fa-expand"></i></button></a>
- <!-- Launch buttons -->
- <div class="dropdown-buttons-trigger">
- <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
- aria-label="Launch interactive content"><i class="fas fa-rocket"></i></button>
- <div class="dropdown-buttons">
-
- <a class="binder-button" href="https://mybinder.org/v2/gh/probml/ssm-book/main?urlpath=tree/chapters/hmm/hmm.ipynb"><button type="button"
- class="btn btn-secondary topbarbtn" title="Launch Binder" data-toggle="tooltip"
- data-placement="left"><img class="binder-button-logo"
- src="../../_static/images/logo_binder.svg"
- alt="Interact on binder">Binder</button></a>
-
-
-
- <a class="colab-button" href="https://colab.research.google.com/github/probml/ssm-book/blob/main/chapters/hmm/hmm.ipynb"><button type="button" class="btn btn-secondary topbarbtn"
- title="Launch Colab" data-toggle="tooltip" data-placement="left"><img class="colab-button-logo"
- src="../../_static/images/logo_colab.png"
- alt="Interact on Colab">Colab</button></a>
-
-
- </div>
- </div>
- </div>
- <!-- Table of contents -->
- <div class="d-none d-md-block col-md-2 bd-toc show noprint">
-
- <div class="tocsection onthispage pt-5 pb-3">
- <i class="fas fa-list"></i> Contents
- </div>
- <nav id="bd-toc-nav" aria-label="Page">
- <ul class="visible nav section-nav flex-column">
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#boilerplate">
- Boilerplate
- </a>
- </li>
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#utility-code">
- Utility code
- </a>
- </li>
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#example-casino-hmm">
- Example: Casino HMM
- </a>
- </li>
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#sampling-from-the-joint">
- Sampling from the joint
- </a>
- <ul class="nav section-nav flex-column">
- <li class="toc-h3 nav-item toc-entry">
- <a class="reference internal nav-link" href="#numpy-version">
- Numpy version
- </a>
- </li>
- <li class="toc-h3 nav-item toc-entry">
- <a class="reference internal nav-link" href="#jax-version">
- JAX version
- </a>
- </li>
- <li class="toc-h3 nav-item toc-entry">
- <a class="reference internal nav-link" href="#check-correctness-by-computing-empirical-pairwise-statistics">
- Check correctness by computing empirical pairwise statistics
- </a>
- </li>
- </ul>
- </li>
- </ul>
- </nav>
- </div>
- </div>
- </div>
- <div id="main-content" class="row">
- <div class="col-12 col-md-9 pl-md-3 pr-md-0">
- <!-- Table of contents that is only displayed when printing the page -->
- <div id="jb-print-docs-body" class="onlyprint">
- <h1>Hidden Markov Models</h1>
- <!-- Table of contents -->
- <div id="print-main-content">
- <div id="jb-print-toc">
-
- <div>
- <h2> Contents </h2>
- </div>
- <nav aria-label="Page">
- <ul class="visible nav section-nav flex-column">
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#boilerplate">
- Boilerplate
- </a>
- </li>
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#utility-code">
- Utility code
- </a>
- </li>
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#example-casino-hmm">
- Example: Casino HMM
- </a>
- </li>
- <li class="toc-h2 nav-item toc-entry">
- <a class="reference internal nav-link" href="#sampling-from-the-joint">
- Sampling from the joint
- </a>
- <ul class="nav section-nav flex-column">
- <li class="toc-h3 nav-item toc-entry">
- <a class="reference internal nav-link" href="#numpy-version">
- Numpy version
- </a>
- </li>
- <li class="toc-h3 nav-item toc-entry">
- <a class="reference internal nav-link" href="#jax-version">
- JAX version
- </a>
- </li>
- <li class="toc-h3 nav-item toc-entry">
- <a class="reference internal nav-link" href="#check-correctness-by-computing-empirical-pairwise-statistics">
- Check correctness by computing empirical pairwise statistics
- </a>
- </li>
- </ul>
- </li>
- </ul>
- </nav>
- </div>
- </div>
- </div>
-
- <div>
-
- <div class="tex2jax_ignore mathjax_ignore section" id="hidden-markov-models">
- <span id="sec-hmm-ex"></span><h1>Hidden Markov Models<a class="headerlink" href="#hidden-markov-models" title="Permalink to this headline">¶</a></h1>
- <p>In this section, we introduce Hidden Markov Models (HMMs).</p>
- <div class="section" id="boilerplate">
- <h2>Boilerplate<a class="headerlink" href="#boilerplate" title="Permalink to this headline">¶</a></h2>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Install necessary libraries</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="kn">import</span> <span class="nn">jax</span>
- <span class="k">except</span><span class="p">:</span>
- <span class="c1"># For cuda version, see https://github.com/google/jax#installation</span>
- <span class="o">%</span><span class="k">pip</span> install --upgrade "jax[cpu]"
- <span class="kn">import</span> <span class="nn">jax</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="kn">import</span> <span class="nn">jsl</span>
- <span class="k">except</span><span class="p">:</span>
- <span class="o">%</span><span class="k">pip</span> install git+https://github.com/probml/jsl
- <span class="kn">import</span> <span class="nn">jsl</span>
- <span class="k">try</span><span class="p">:</span>
- <span class="kn">import</span> <span class="nn">rich</span>
- <span class="k">except</span><span class="p">:</span>
- <span class="o">%</span><span class="k">pip</span> install rich
- <span class="kn">import</span> <span class="nn">rich</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># Import standard libraries</span>
- <span class="kn">import</span> <span class="nn">abc</span>
- <span class="kn">from</span> <span class="nn">dataclasses</span> <span class="kn">import</span> <span class="n">dataclass</span>
- <span class="kn">import</span> <span class="nn">functools</span>
- <span class="kn">import</span> <span class="nn">itertools</span>
- <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">NamedTuple</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Tuple</span>
- <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
- <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
- <span class="kn">import</span> <span class="nn">jax</span>
- <span class="kn">import</span> <span class="nn">jax.numpy</span> <span class="k">as</span> <span class="nn">jnp</span>
- <span class="kn">from</span> <span class="nn">jax</span> <span class="kn">import</span> <span class="n">lax</span><span class="p">,</span> <span class="n">vmap</span><span class="p">,</span> <span class="n">jit</span><span class="p">,</span> <span class="n">grad</span>
- <span class="kn">from</span> <span class="nn">jax.scipy.special</span> <span class="kn">import</span> <span class="n">logit</span>
- <span class="kn">from</span> <span class="nn">jax.nn</span> <span class="kn">import</span> <span class="n">softmax</span>
- <span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
- <span class="kn">from</span> <span class="nn">jax.random</span> <span class="kn">import</span> <span class="n">PRNGKey</span><span class="p">,</span> <span class="n">split</span>
- <span class="kn">import</span> <span class="nn">inspect</span>
- <span class="kn">import</span> <span class="nn">inspect</span> <span class="k">as</span> <span class="nn">py_inspect</span>
- <span class="kn">from</span> <span class="nn">rich</span> <span class="kn">import</span> <span class="n">inspect</span> <span class="k">as</span> <span class="n">r_inspect</span>
- <span class="kn">from</span> <span class="nn">rich</span> <span class="kn">import</span> <span class="nb">print</span> <span class="k">as</span> <span class="n">r_print</span>
- <span class="k">def</span> <span class="nf">print_source</span><span class="p">(</span><span class="n">fname</span><span class="p">):</span>
- <span class="n">r_print</span><span class="p">(</span><span class="n">py_inspect</span><span class="o">.</span><span class="n">getsource</span><span class="p">(</span><span class="n">fname</span><span class="p">))</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="section" id="utility-code">
- <h2>Utility code<a class="headerlink" href="#utility-code" title="Permalink to this headline">¶</a></h2>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">normalize</span><span class="p">(</span><span class="n">u</span><span class="p">,</span> <span class="n">axis</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">eps</span><span class="o">=</span><span class="mf">1e-15</span><span class="p">):</span>
- <span class="sd">'''</span>
- <span class="sd"> Normalizes the values within the axis in a way that they sum up to 1.</span>
- <span class="sd"> Parameters</span>
- <span class="sd"> ----------</span>
- <span class="sd"> u : array</span>
- <span class="sd"> axis : int</span>
- <span class="sd"> eps : float</span>
- <span class="sd"> Threshold for the alpha values</span>
- <span class="sd"> Returns</span>
- <span class="sd"> -------</span>
- <span class="sd"> * array</span>
- <span class="sd"> Normalized version of the given matrix</span>
- <span class="sd"> * array(seq_len, n_hidden) :</span>
- <span class="sd"> The values of the normalizer</span>
- <span class="sd"> '''</span>
- <span class="n">u</span> <span class="o">=</span> <span class="n">jnp</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">u</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="n">jnp</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">u</span> <span class="o"><</span> <span class="n">eps</span><span class="p">,</span> <span class="n">eps</span><span class="p">,</span> <span class="n">u</span><span class="p">))</span>
- <span class="n">c</span> <span class="o">=</span> <span class="n">u</span><span class="o">.</span><span class="n">sum</span><span class="p">(</span><span class="n">axis</span><span class="o">=</span><span class="n">axis</span><span class="p">)</span>
- <span class="n">c</span> <span class="o">=</span> <span class="n">jnp</span><span class="o">.</span><span class="n">where</span><span class="p">(</span><span class="n">c</span> <span class="o">==</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="n">c</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">u</span> <span class="o">/</span> <span class="n">c</span><span class="p">,</span> <span class="n">c</span>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="section" id="example-casino-hmm">
- <span id="sec-casino-ex"></span><h2>Example: Casino HMM<a class="headerlink" href="#example-casino-hmm" title="Permalink to this headline">¶</a></h2>
- <p>We first create the “Ocassionally dishonest casino” model from <span id="id1">[<a class="reference internal" href="../../bib.html#id3" title="R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press, 1998.">DEKM98</a>]</span>.</p>
- <div class="figure align-default" id="casino-fig">
- <a class="reference internal image-reference" href="../../_images/casino.png"><img alt="../../_images/casino.png" src="../../_images/casino.png" style="width: 208.5px; height: 142.5px;" /></a>
- <p class="caption"><span class="caption-text">Illustration of the casino HMM.</span><a class="headerlink" href="#casino-fig" title="Permalink to this image">¶</a></p>
- </div>
- <p>There are 2 hidden states, each of which emit 6 possible observations.</p>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1"># state transition matrix</span>
- <span class="n">A</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span>
- <span class="p">[</span><span class="mf">0.95</span><span class="p">,</span> <span class="mf">0.05</span><span class="p">],</span>
- <span class="p">[</span><span class="mf">0.10</span><span class="p">,</span> <span class="mf">0.90</span><span class="p">]</span>
- <span class="p">])</span>
- <span class="c1"># observation matrix</span>
- <span class="n">B</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span>
- <span class="p">[</span><span class="mi">1</span><span class="o">/</span><span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">6</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">6</span><span class="p">],</span> <span class="c1"># fair die</span>
- <span class="p">[</span><span class="mi">1</span><span class="o">/</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">10</span><span class="p">,</span> <span class="mi">1</span><span class="o">/</span><span class="mi">10</span><span class="p">,</span> <span class="mi">5</span><span class="o">/</span><span class="mi">10</span><span class="p">]</span> <span class="c1"># loaded die</span>
- <span class="p">])</span>
- <span class="n">pi</span><span class="p">,</span> <span class="n">_</span> <span class="o">=</span> <span class="n">normalize</span><span class="p">(</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">]))</span>
- <span class="n">pi</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">pi</span><span class="p">)</span>
- <span class="p">(</span><span class="n">nstates</span><span class="p">,</span> <span class="n">nobs</span><span class="p">)</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">shape</span><span class="p">(</span><span class="n">B</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- <div class="cell_output docutils container">
- <div class="output stderr highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>WARNING:absl:No GPU/TPU found, falling back to CPU. (Set TF_CPP_MIN_LOG_LEVEL=0 and rerun for more info.)
- </pre></div>
- </div>
- </div>
- </div>
- <p>Let’s make a little data structure to store all the parameters.
- We use NamedTuple rather than dataclass, since we assume these are immutable.
- (Also, standard python dataclass does not work well with JAX, which requires parameters to be
- pytrees, as discussed in <a class="reference external" href="https://github.com/google/jax/issues/2371">https://github.com/google/jax/issues/2371</a>).</p>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">Array</span> <span class="o">=</span> <span class="n">Union</span><span class="p">[</span><span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">,</span> <span class="n">jnp</span><span class="o">.</span><span class="n">array</span><span class="p">]</span>
- <span class="k">class</span> <span class="nc">HMM</span><span class="p">(</span><span class="n">NamedTuple</span><span class="p">):</span>
- <span class="n">trans_mat</span><span class="p">:</span> <span class="n">Array</span> <span class="c1"># A : (n_states, n_states)</span>
- <span class="n">obs_mat</span><span class="p">:</span> <span class="n">Array</span> <span class="c1"># B : (n_states, n_obs)</span>
- <span class="n">init_dist</span><span class="p">:</span> <span class="n">Array</span> <span class="c1"># pi : (n_states)</span>
- <span class="n">params_np</span> <span class="o">=</span> <span class="n">HMM</span><span class="p">(</span><span class="n">A</span><span class="p">,</span> <span class="n">B</span><span class="p">,</span> <span class="n">pi</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">params_np</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">params_np</span><span class="o">.</span><span class="n">trans_mat</span><span class="p">))</span>
- <span class="n">params</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">tree_map</span><span class="p">(</span><span class="k">lambda</span> <span class="n">x</span><span class="p">:</span> <span class="n">jnp</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">x</span><span class="p">),</span> <span class="n">params_np</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">params</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="nb">type</span><span class="p">(</span><span class="n">params</span><span class="o">.</span><span class="n">trans_mat</span><span class="p">))</span>
- </pre></div>
- </div>
- </div>
- <div class="cell_output docutils container">
- <div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>HMM(trans_mat=array([[0.95, 0.05],
- [0.1 , 0.9 ]]), obs_mat=array([[0.16666667, 0.16666667, 0.16666667, 0.16666667, 0.16666667,
- 0.16666667],
- [0.1 , 0.1 , 0.1 , 0.1 , 0.1 ,
- 0.5 ]]), init_dist=array([0.5, 0.5], dtype=float32))
- <class 'numpy.ndarray'>
- HMM(trans_mat=DeviceArray([[0.95, 0.05],
- [0.1 , 0.9 ]], dtype=float32), obs_mat=DeviceArray([[0.16666667, 0.16666667, 0.16666667, 0.16666667, 0.16666667,
- 0.16666667],
- [0.1 , 0.1 , 0.1 , 0.1 , 0.1 ,
- 0.5 ]], dtype=float32), init_dist=DeviceArray([0.5, 0.5], dtype=float32))
- <class 'jaxlib.xla_extension.DeviceArray'>
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="section" id="sampling-from-the-joint">
- <h2>Sampling from the joint<a class="headerlink" href="#sampling-from-the-joint" title="Permalink to this headline">¶</a></h2>
- <p>Let’s write code to sample from this model.</p>
- <div class="section" id="numpy-version">
- <h3>Numpy version<a class="headerlink" href="#numpy-version" title="Permalink to this headline">¶</a></h3>
- <p>First we code it in numpy using a for loop.</p>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="k">def</span> <span class="nf">hmm_sample_np</span><span class="p">(</span><span class="n">params</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">0</span><span class="p">):</span>
- <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">seed</span><span class="p">(</span><span class="n">random_state</span><span class="p">)</span>
- <span class="n">trans_mat</span><span class="p">,</span> <span class="n">obs_mat</span><span class="p">,</span> <span class="n">init_dist</span> <span class="o">=</span> <span class="n">params</span><span class="o">.</span><span class="n">trans_mat</span><span class="p">,</span> <span class="n">params</span><span class="o">.</span><span class="n">obs_mat</span><span class="p">,</span> <span class="n">params</span><span class="o">.</span><span class="n">init_dist</span>
- <span class="n">n_states</span><span class="p">,</span> <span class="n">n_obs</span> <span class="o">=</span> <span class="n">obs_mat</span><span class="o">.</span><span class="n">shape</span>
- <span class="n">state_seq</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">seq_len</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
- <span class="n">obs_seq</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">(</span><span class="n">seq_len</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="nb">int</span><span class="p">)</span>
- <span class="k">for</span> <span class="n">t</span> <span class="ow">in</span> <span class="nb">range</span><span class="p">(</span><span class="n">seq_len</span><span class="p">):</span>
- <span class="k">if</span> <span class="n">t</span><span class="o">==</span><span class="mi">0</span><span class="p">:</span>
- <span class="n">zt</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">n_states</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">init_dist</span><span class="p">)</span>
- <span class="k">else</span><span class="p">:</span>
- <span class="n">zt</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">n_states</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">trans_mat</span><span class="p">[</span><span class="n">zt</span><span class="p">])</span>
- <span class="n">yt</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">n_obs</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">obs_mat</span><span class="p">[</span><span class="n">zt</span><span class="p">])</span>
- <span class="n">state_seq</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">zt</span>
- <span class="n">obs_seq</span><span class="p">[</span><span class="n">t</span><span class="p">]</span> <span class="o">=</span> <span class="n">yt</span>
- <span class="k">return</span> <span class="n">state_seq</span><span class="p">,</span> <span class="n">obs_seq</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">seq_len</span> <span class="o">=</span> <span class="mi">100</span>
- <span class="n">state_seq</span><span class="p">,</span> <span class="n">obs_seq</span> <span class="o">=</span> <span class="n">hmm_sample_np</span><span class="p">(</span><span class="n">params_np</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">,</span> <span class="n">random_state</span><span class="o">=</span><span class="mi">1</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">state_seq</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">obs_seq</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- <div class="cell_output docutils container">
- <div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
- [4 1 0 2 3 4 5 4 3 1 5 4 5 0 5 2 5 3 5 4 5 5 4 2 1 4 1 0 0 4 2 2 3 3 3 0 4
- 0 2 4 3 2 5 5 3 5 3 1 3 3 3 2 3 5 5 0 4 4 5 0 0 1 3 5 1 5 0 1 2 4 0 0 0 4
- 0 5 1 4 3 5 4 5 0 2 3 5 2 4 1 2 1 0 4 3 5 0 4 5 1 5]
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="section" id="jax-version">
- <h3>JAX version<a class="headerlink" href="#jax-version" title="Permalink to this headline">¶</a></h3>
- <p>Now let’s write a JAX version using jax.lax.scan (for the inter-dependent states) and vmap (for the observations).
- This is harder to read than the numpy version, but faster.</p>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1">#@partial(jit, static_argnums=(1,))</span>
- <span class="k">def</span> <span class="nf">markov_chain_sample</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">init_dist</span><span class="p">,</span> <span class="n">trans_mat</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">):</span>
- <span class="n">n_states</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">init_dist</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">draw_state</span><span class="p">(</span><span class="n">prev_state</span><span class="p">,</span> <span class="n">key</span><span class="p">):</span>
- <span class="n">state</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">n_states</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">trans_mat</span><span class="p">[</span><span class="n">prev_state</span><span class="p">])</span>
- <span class="k">return</span> <span class="n">state</span><span class="p">,</span> <span class="n">state</span>
- <span class="n">rng_key</span><span class="p">,</span> <span class="n">rng_state</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
- <span class="n">keys</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_state</span><span class="p">,</span> <span class="n">seq_len</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">initial_state</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">n_states</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">init_dist</span><span class="p">)</span>
- <span class="n">final_state</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">lax</span><span class="o">.</span><span class="n">scan</span><span class="p">(</span><span class="n">draw_state</span><span class="p">,</span> <span class="n">initial_state</span><span class="p">,</span> <span class="n">keys</span><span class="p">)</span>
- <span class="n">state_seq</span> <span class="o">=</span> <span class="n">jnp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">jnp</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">initial_state</span><span class="p">]),</span> <span class="n">states</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">state_seq</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1">#@partial(jit, static_argnums=(1,))</span>
- <span class="k">def</span> <span class="nf">hmm_sample</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">):</span>
- <span class="n">trans_mat</span><span class="p">,</span> <span class="n">obs_mat</span><span class="p">,</span> <span class="n">init_dist</span> <span class="o">=</span> <span class="n">params</span><span class="o">.</span><span class="n">trans_mat</span><span class="p">,</span> <span class="n">params</span><span class="o">.</span><span class="n">obs_mat</span><span class="p">,</span> <span class="n">params</span><span class="o">.</span><span class="n">init_dist</span>
- <span class="n">n_states</span><span class="p">,</span> <span class="n">n_obs</span> <span class="o">=</span> <span class="n">obs_mat</span><span class="o">.</span><span class="n">shape</span>
- <span class="n">rng_key</span><span class="p">,</span> <span class="n">rng_obs</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="mi">2</span><span class="p">)</span>
- <span class="n">state_seq</span> <span class="o">=</span> <span class="n">markov_chain_sample</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">init_dist</span><span class="p">,</span> <span class="n">trans_mat</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">draw_obs</span><span class="p">(</span><span class="n">z</span><span class="p">,</span> <span class="n">key</span><span class="p">):</span>
- <span class="n">obs</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">n_obs</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">obs_mat</span><span class="p">[</span><span class="n">z</span><span class="p">])</span>
- <span class="k">return</span> <span class="n">obs</span>
- <span class="n">keys</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_obs</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">)</span>
- <span class="n">obs_seq</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">vmap</span><span class="p">(</span><span class="n">draw_obs</span><span class="p">,</span> <span class="n">in_axes</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">))(</span><span class="n">state_seq</span><span class="p">,</span> <span class="n">keys</span><span class="p">)</span>
-
- <span class="k">return</span> <span class="n">state_seq</span><span class="p">,</span> <span class="n">obs_seq</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1">#@partial(jit, static_argnums=(1,))</span>
- <span class="k">def</span> <span class="nf">hmm_sample2</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">):</span>
- <span class="n">trans_mat</span><span class="p">,</span> <span class="n">obs_mat</span><span class="p">,</span> <span class="n">init_dist</span> <span class="o">=</span> <span class="n">params</span><span class="o">.</span><span class="n">trans_mat</span><span class="p">,</span> <span class="n">params</span><span class="o">.</span><span class="n">obs_mat</span><span class="p">,</span> <span class="n">params</span><span class="o">.</span><span class="n">init_dist</span>
- <span class="n">n_states</span><span class="p">,</span> <span class="n">n_obs</span> <span class="o">=</span> <span class="n">obs_mat</span><span class="o">.</span><span class="n">shape</span>
- <span class="k">def</span> <span class="nf">draw_state</span><span class="p">(</span><span class="n">prev_state</span><span class="p">,</span> <span class="n">key</span><span class="p">):</span>
- <span class="n">state</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">n_states</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">trans_mat</span><span class="p">[</span><span class="n">prev_state</span><span class="p">])</span>
- <span class="k">return</span> <span class="n">state</span><span class="p">,</span> <span class="n">state</span>
- <span class="n">rng_key</span><span class="p">,</span> <span class="n">rng_state</span><span class="p">,</span> <span class="n">rng_obs</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="mi">3</span><span class="p">)</span>
- <span class="n">keys</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_state</span><span class="p">,</span> <span class="n">seq_len</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span>
- <span class="n">initial_state</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">n_states</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">init_dist</span><span class="p">)</span>
- <span class="n">final_state</span><span class="p">,</span> <span class="n">states</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">lax</span><span class="o">.</span><span class="n">scan</span><span class="p">(</span><span class="n">draw_state</span><span class="p">,</span> <span class="n">initial_state</span><span class="p">,</span> <span class="n">keys</span><span class="p">)</span>
- <span class="n">state_seq</span> <span class="o">=</span> <span class="n">jnp</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="n">jnp</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="n">initial_state</span><span class="p">]),</span> <span class="n">states</span><span class="p">)</span>
- <span class="k">def</span> <span class="nf">draw_obs</span><span class="p">(</span><span class="n">z</span><span class="p">,</span> <span class="n">key</span><span class="p">):</span>
- <span class="n">obs</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">choice</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">n_obs</span><span class="p">,</span> <span class="n">p</span><span class="o">=</span><span class="n">obs_mat</span><span class="p">[</span><span class="n">z</span><span class="p">])</span>
- <span class="k">return</span> <span class="n">obs</span>
- <span class="n">keys</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">split</span><span class="p">(</span><span class="n">rng_obs</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">)</span>
- <span class="n">obs_seq</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">vmap</span><span class="p">(</span><span class="n">draw_obs</span><span class="p">,</span> <span class="n">in_axes</span><span class="o">=</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">))(</span><span class="n">state_seq</span><span class="p">,</span> <span class="n">keys</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">state_seq</span><span class="p">,</span> <span class="n">obs_seq</span>
- </pre></div>
- </div>
- </div>
- </div>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="n">key</span> <span class="o">=</span> <span class="n">PRNGKey</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
- <span class="n">seq_len</span> <span class="o">=</span> <span class="mi">100</span>
- <span class="n">state_seq</span><span class="p">,</span> <span class="n">obs_seq</span> <span class="o">=</span> <span class="n">hmm_sample</span><span class="p">(</span><span class="n">key</span><span class="p">,</span> <span class="n">params</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">state_seq</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">obs_seq</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- <div class="cell_output docutils container">
- <div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
- 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
- [5 5 2 2 0 0 0 1 3 3 2 2 5 1 5 1 0 2 2 4 2 5 1 5 5 0 0 4 2 4 3 2 3 4 1 0 5
- 2 2 2 1 4 3 2 2 2 4 1 0 3 5 2 5 1 4 2 5 2 5 0 5 4 4 4 2 2 0 4 5 2 2 0 1 5
- 1 3 4 5 1 5 0 5 1 5 1 2 4 5 3 4 5 4 0 4 0 2 4 5 3 3]
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- <div class="section" id="check-correctness-by-computing-empirical-pairwise-statistics">
- <h3>Check correctness by computing empirical pairwise statistics<a class="headerlink" href="#check-correctness-by-computing-empirical-pairwise-statistics" title="Permalink to this headline">¶</a></h3>
- <p>We will compute the number of i->j transitions, and check that it is close to the true
- A[i,j] transition probabilites.</p>
- <div class="cell docutils container">
- <div class="cell_input docutils container">
- <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="kn">import</span> <span class="nn">collections</span>
- <span class="k">def</span> <span class="nf">compute_counts</span><span class="p">(</span><span class="n">state_seq</span><span class="p">,</span> <span class="n">nstates</span><span class="p">):</span>
- <span class="n">wseq</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">array</span><span class="p">(</span><span class="n">state_seq</span><span class="p">)</span>
- <span class="n">word_pairs</span> <span class="o">=</span> <span class="p">[</span><span class="n">pair</span> <span class="k">for</span> <span class="n">pair</span> <span class="ow">in</span> <span class="nb">zip</span><span class="p">(</span><span class="n">wseq</span><span class="p">[:</span><span class="o">-</span><span class="mi">1</span><span class="p">],</span> <span class="n">wseq</span><span class="p">[</span><span class="mi">1</span><span class="p">:])]</span>
- <span class="n">counter_pairs</span> <span class="o">=</span> <span class="n">collections</span><span class="o">.</span><span class="n">Counter</span><span class="p">(</span><span class="n">word_pairs</span><span class="p">)</span>
- <span class="n">counts</span> <span class="o">=</span> <span class="n">np</span><span class="o">.</span><span class="n">zeros</span><span class="p">((</span><span class="n">nstates</span><span class="p">,</span> <span class="n">nstates</span><span class="p">))</span>
- <span class="k">for</span> <span class="p">(</span><span class="n">k</span><span class="p">,</span><span class="n">v</span><span class="p">)</span> <span class="ow">in</span> <span class="n">counter_pairs</span><span class="o">.</span><span class="n">items</span><span class="p">():</span>
- <span class="n">counts</span><span class="p">[</span><span class="n">k</span><span class="p">[</span><span class="mi">0</span><span class="p">],</span> <span class="n">k</span><span class="p">[</span><span class="mi">1</span><span class="p">]]</span> <span class="o">=</span> <span class="n">v</span>
- <span class="k">return</span> <span class="n">counts</span>
- <span class="k">def</span> <span class="nf">normalize_counts</span><span class="p">(</span><span class="n">counts</span><span class="p">):</span>
- <span class="n">ncounts</span> <span class="o">=</span> <span class="n">vmap</span><span class="p">(</span><span class="k">lambda</span> <span class="n">v</span><span class="p">:</span> <span class="n">normalize</span><span class="p">(</span><span class="n">v</span><span class="p">)[</span><span class="mi">0</span><span class="p">],</span> <span class="n">in_axes</span><span class="o">=</span><span class="mi">0</span><span class="p">)(</span><span class="n">counts</span><span class="p">)</span>
- <span class="k">return</span> <span class="n">ncounts</span>
- <span class="n">init_dist</span> <span class="o">=</span> <span class="n">jnp</span><span class="o">.</span><span class="n">array</span><span class="p">([</span><span class="mf">1.0</span><span class="p">,</span> <span class="mf">0.0</span><span class="p">])</span>
- <span class="n">trans_mat</span> <span class="o">=</span> <span class="n">jnp</span><span class="o">.</span><span class="n">array</span><span class="p">([[</span><span class="mf">0.7</span><span class="p">,</span> <span class="mf">0.3</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.5</span><span class="p">,</span> <span class="mf">0.5</span><span class="p">]])</span>
- <span class="n">rng_key</span> <span class="o">=</span> <span class="n">jax</span><span class="o">.</span><span class="n">random</span><span class="o">.</span><span class="n">PRNGKey</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
- <span class="n">seq_len</span> <span class="o">=</span> <span class="mi">500</span>
- <span class="n">state_seq</span> <span class="o">=</span> <span class="n">markov_chain_sample</span><span class="p">(</span><span class="n">rng_key</span><span class="p">,</span> <span class="n">init_dist</span><span class="p">,</span> <span class="n">trans_mat</span><span class="p">,</span> <span class="n">seq_len</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">state_seq</span><span class="p">)</span>
- <span class="n">counts</span> <span class="o">=</span> <span class="n">compute_counts</span><span class="p">(</span><span class="n">state_seq</span><span class="p">,</span> <span class="n">nstates</span><span class="o">=</span><span class="mi">2</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span>
- <span class="n">trans_mat_empirical</span> <span class="o">=</span> <span class="n">normalize_counts</span><span class="p">(</span><span class="n">counts</span><span class="p">)</span>
- <span class="nb">print</span><span class="p">(</span><span class="n">trans_mat_empirical</span><span class="p">)</span>
- <span class="k">assert</span> <span class="n">jnp</span><span class="o">.</span><span class="n">allclose</span><span class="p">(</span><span class="n">trans_mat</span><span class="p">,</span> <span class="n">trans_mat_empirical</span><span class="p">,</span> <span class="n">atol</span><span class="o">=</span><span class="mf">1e-1</span><span class="p">)</span>
- </pre></div>
- </div>
- </div>
- <div class="cell_output docutils container">
- <div class="output stream highlight-myst-ansi notranslate"><div class="highlight"><pre><span></span>[0 0 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
- 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 1 0
- 1 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 1 1 0 0 0
- 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 0 0 0 0 0 0 1 0
- 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 0
- 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 0
- 0 0 0 1 1 1 0 0 0 0 1 0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 0 0 1 0 0
- 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 1 1 1 1
- 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1
- 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1 1 0 1 0 0 0
- 0 0 0 0 0 0 0 1 0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 1 0
- 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
- 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 0 0 1
- 1 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 1]
- [[244. 93.]
- [ 92. 70.]]
- [[0.7240356 0.27596438]
- [0.56790125 0.43209878]]
- </pre></div>
- </div>
- </div>
- </div>
- </div>
- </div>
- </div>
- <script type="text/x-thebe-config">
- {
- requestKernel: true,
- binderOptions: {
- repo: "binder-examples/jupyter-stacks-datascience",
- ref: "master",
- },
- codeMirrorConfig: {
- theme: "abcdef",
- mode: "python"
- },
- kernelOptions: {
- kernelName: "python3",
- path: "./chapters/hmm"
- },
- predefinedOutput: true
- }
- </script>
- <script>kernelName = 'python3'</script>
- </div>
-
-
- <!-- Previous / next buttons -->
- <div class='prev-next-area'>
- </div>
-
- </div>
- </div>
- <footer class="footer">
- <p>
-
- By Kevin Murphy, Scott Linderman, et al.<br/>
-
- © Copyright 2021.<br/>
- </p>
- </footer>
- </main>
- </div>
- </div>
-
- <script src="../../_static/js/index.be7d3bbb2ef33a8344ce.js"></script>
- </body>
- </html>
|