learning.html 27 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596
  1. <!DOCTYPE html>
  2. <html>
  3. <head>
  4. <meta charset="utf-8" />
  5. <meta name="viewport" content="width=device-width, initial-scale=1.0" />
  6. <title>Parameter estimation (learning) &#8212; State Space Models: A Modern Approach</title>
  7. <link href="../../_static/css/theme.css" rel="stylesheet">
  8. <link href="../../_static/css/index.ff1ffe594081f20da1ef19478df9384b.css" rel="stylesheet">
  9. <link rel="stylesheet"
  10. href="../../_static/vendor/fontawesome/5.13.0/css/all.min.css">
  11. <link rel="preload" as="font" type="font/woff2" crossorigin
  12. href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-solid-900.woff2">
  13. <link rel="preload" as="font" type="font/woff2" crossorigin
  14. href="../../_static/vendor/fontawesome/5.13.0/webfonts/fa-brands-400.woff2">
  15. <link rel="stylesheet" type="text/css" href="../../_static/pygments.css" />
  16. <link rel="stylesheet" type="text/css" href="../../_static/sphinx-book-theme.css?digest=c3fdc42140077d1ad13ad2f1588a4309" />
  17. <link rel="stylesheet" type="text/css" href="../../_static/togglebutton.css" />
  18. <link rel="stylesheet" type="text/css" href="../../_static/copybutton.css" />
  19. <link rel="stylesheet" type="text/css" href="../../_static/mystnb.css" />
  20. <link rel="stylesheet" type="text/css" href="../../_static/sphinx-thebe.css" />
  21. <link rel="stylesheet" type="text/css" href="../../_static/panels-main.c949a650a448cc0ae9fd3441c0e17fb0.css" />
  22. <link rel="stylesheet" type="text/css" href="../../_static/panels-variables.06eb56fa6e07937060861dad626602ad.css" />
  23. <link rel="preload" as="script" href="../../_static/js/index.be7d3bbb2ef33a8344ce.js">
  24. <script data-url_root="../../" id="documentation_options" src="../../_static/documentation_options.js"></script>
  25. <script src="../../_static/jquery.js"></script>
  26. <script src="../../_static/underscore.js"></script>
  27. <script src="../../_static/doctools.js"></script>
  28. <script src="../../_static/clipboard.min.js"></script>
  29. <script src="../../_static/copybutton.js"></script>
  30. <script>let toggleHintShow = 'Click to show';</script>
  31. <script>let toggleHintHide = 'Click to hide';</script>
  32. <script>let toggleOpenOnPrint = 'true';</script>
  33. <script src="../../_static/togglebutton.js"></script>
  34. <script>var togglebuttonSelector = '.toggle, .admonition.dropdown, .tag_hide_input div.cell_input, .tag_hide-input div.cell_input, .tag_hide_output div.cell_output, .tag_hide-output div.cell_output, .tag_hide_cell.cell, .tag_hide-cell.cell';</script>
  35. <script src="../../_static/sphinx-book-theme.d59cb220de22ca1c485ebbdc042f0030.js"></script>
  36. <script>const THEBE_JS_URL = "https://unpkg.com/thebe@0.8.2/lib/index.js"
  37. const thebe_selector = ".thebe,.cell"
  38. const thebe_selector_input = "pre"
  39. const thebe_selector_output = ".output, .cell_output"
  40. </script>
  41. <script async="async" src="../../_static/sphinx-thebe.js"></script>
  42. <script>window.MathJax = {"tex": {"macros": {"covMat": "\\boldsymbol{\\Sigma}", "data": "\\mathcal{D}", "defeq": "\\triangleq", "diag": "\\mathrm{diag}", "discreteState": "s", "dotstar": "\\odot", "dynamicsFn": "\\mathbf{f}", "floor": ["\\lfloor#1\\rfloor", 1], "gainMatrix": "\\mathbf{K}", "gainMatrixReverse": "\\mathbf{G}", "gauss": "\\mathcal{N}", "gaussInfo": "\\mathcal{N}_{\\text{info}}", "hidden": "\\mathbf{x}", "hiddenScalar": "x", "hmmInit": "\\boldsymbol{\\pi}", "hmmInitScalar": "\\pi", "hmmObs": "\\mathbf{B}", "hmmObsScalar": "B", "hmmTrans": "\\mathbf{A}", "hmmTransScalar": "A", "infoMat": "\\precMat", "input": "\\mathbf{u}", "inputs": "\\input", "inv": ["{#1}^{-1}", 1], "keyword": ["\\textbf{#1}", 1], "ldsDyn": "\\mathbf{F}", "ldsDynIn": "\\mathbf{B}", "initMean": "\\boldsymbol{\\mean}_0", "initCov": "\\boldsymbol{\\covMat}_0", "ldsObs": "\\mathbf{H}", "ldsObsIn": "\\mathbf{D}", "ldsTrans": "\\ldsDyn", "ldsTransIn": "\\ldsDynIn", "obsCov": "\\mathbf{R}", "obsNoise": "\\boldsymbol{r}", "map": "\\mathrm{map}", "measurementFn": "\\mathbf{h}", "mean": "\\boldsymbol{\\mu}", "mle": "\\mathrm{mle}", "nlatents": "n_x", "nhidden": "\\nlatents", "ninputs": "n_u", "nobs": "n_y", "nsymbols": "n_y", "nstates": "n_s", "obs": "\\mathbf{y}", "obsScalar": "y", "observed": "\\obs", "obsFn": "\\measurementFn", "params": "\\boldsymbol{\\theta}", "precMean": "\\boldsymbol{\\eta}", "precMat": "\\boldsymbol{\\Lambda}", "real": "\\mathbb{R}", "sigmoid": "\\sigma", "softmax": "\\boldsymbol{\\sigma}", "trans": "\\mathsf{T}", "transpose": ["{#1}^{\\trans}", 1], "transCov": "\\mathbf{Q}", "transNoise": "\\mathbf{q}", "valpha": "\\boldsymbol{\\alpha}", "vbeta": "\\boldsymbol{\\beta}", "vdelta": "\\boldsymbol{\\delta}", "vepsilon": "\\boldsymbol{\\epsilon}", "vlambda": "\\boldsymbol{\\lambda}", "vLambda": "\\boldsymbol{\\Lambda}", "vmu": "\\boldsymbol{\\mu}", "vpi": "\\boldsymbol{\\pi}", "vsigma": "\\boldsymbol{\\sigma}", "vSigma": "\\boldsymbol{\\Sigma}", "vone": "\\boldsymbol{1}", "vzero": "\\boldsymbol{0}"}}, "options": {"processHtmlClass": "tex2jax_process|mathjax_process|math|output_area"}}</script>
  43. <script defer="defer" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
  44. <link rel="index" title="Index" href="../../genindex.html" />
  45. <link rel="search" title="Search" href="../../search.html" />
  46. <link rel="next" title="Hidden Markov Models" href="../hmm/hmm_index.html" />
  47. <link rel="prev" title="States estimation (inference)" href="inference.html" />
  48. <meta name="viewport" content="width=device-width, initial-scale=1" />
  49. <meta name="docsearch:language" content="None">
  50. <!-- Google Analytics -->
  51. </head>
  52. <body data-spy="scroll" data-target="#bd-toc-nav" data-offset="80">
  53. <div class="container-fluid" id="banner"></div>
  54. <div class="container-xl">
  55. <div class="row">
  56. <div class="col-12 col-md-3 bd-sidebar site-navigation show" id="site-navigation">
  57. <div class="navbar-brand-box">
  58. <a class="navbar-brand text-wrap" href="../../index.html">
  59. <h1 class="site-logo" id="site-title">State Space Models: A Modern Approach</h1>
  60. </a>
  61. </div><form class="bd-search d-flex align-items-center" action="../../search.html" method="get">
  62. <i class="icon fas fa-search"></i>
  63. <input type="search" class="form-control" name="q" id="search-input" placeholder="Search this book..." aria-label="Search this book..." autocomplete="off" >
  64. </form><nav class="bd-links" id="bd-docs-nav" aria-label="Main">
  65. <div class="bd-toc-item active">
  66. <ul class="nav bd-sidenav">
  67. <li class="toctree-l1">
  68. <a class="reference internal" href="../../root.html">
  69. State Space Models: A Modern Approach
  70. </a>
  71. </li>
  72. </ul>
  73. <ul class="current nav bd-sidenav">
  74. <li class="toctree-l1 current active has-children">
  75. <a class="reference internal" href="ssm_index.html">
  76. State Space Models
  77. </a>
  78. <input checked="" class="toctree-checkbox" id="toctree-checkbox-1" name="toctree-checkbox-1" type="checkbox"/>
  79. <label for="toctree-checkbox-1">
  80. <i class="fas fa-chevron-down">
  81. </i>
  82. </label>
  83. <ul class="current">
  84. <li class="toctree-l2">
  85. <a class="reference internal" href="ssm_intro.html">
  86. What are State Space Models?
  87. </a>
  88. </li>
  89. <li class="toctree-l2">
  90. <a class="reference internal" href="hmm.html">
  91. Hidden Markov Models
  92. </a>
  93. </li>
  94. <li class="toctree-l2">
  95. <a class="reference internal" href="lds.html">
  96. Linear Gaussian SSMs
  97. </a>
  98. </li>
  99. <li class="toctree-l2">
  100. <a class="reference internal" href="nlds.html">
  101. Nonlinear Gaussian SSMs
  102. </a>
  103. </li>
  104. <li class="toctree-l2">
  105. <a class="reference internal" href="inference.html">
  106. States estimation (inference)
  107. </a>
  108. </li>
  109. <li class="toctree-l2 current active">
  110. <a class="current reference internal" href="#">
  111. Parameter estimation (learning)
  112. </a>
  113. </li>
  114. </ul>
  115. </li>
  116. <li class="toctree-l1 has-children">
  117. <a class="reference internal" href="../hmm/hmm_index.html">
  118. Hidden Markov Models
  119. </a>
  120. <input class="toctree-checkbox" id="toctree-checkbox-2" name="toctree-checkbox-2" type="checkbox"/>
  121. <label for="toctree-checkbox-2">
  122. <i class="fas fa-chevron-down">
  123. </i>
  124. </label>
  125. <ul>
  126. <li class="toctree-l2">
  127. <a class="reference internal" href="../hmm/hmm_filter.html">
  128. HMM filtering (forwards algorithm)
  129. </a>
  130. </li>
  131. <li class="toctree-l2">
  132. <a class="reference internal" href="../hmm/hmm_smoother.html">
  133. HMM smoothing (forwards-backwards algorithm)
  134. </a>
  135. </li>
  136. <li class="toctree-l2">
  137. <a class="reference internal" href="../hmm/hmm_viterbi.html">
  138. Viterbi algorithm
  139. </a>
  140. </li>
  141. <li class="toctree-l2">
  142. <a class="reference internal" href="../hmm/hmm_parallel.html">
  143. Parallel HMM smoothing
  144. </a>
  145. </li>
  146. <li class="toctree-l2">
  147. <a class="reference internal" href="../hmm/hmm_sampling.html">
  148. Forwards-filtering backwards-sampling algorithm
  149. </a>
  150. </li>
  151. </ul>
  152. </li>
  153. <li class="toctree-l1 has-children">
  154. <a class="reference internal" href="../lgssm/lgssm_index.html">
  155. Linear-Gaussian SSMs
  156. </a>
  157. <input class="toctree-checkbox" id="toctree-checkbox-3" name="toctree-checkbox-3" type="checkbox"/>
  158. <label for="toctree-checkbox-3">
  159. <i class="fas fa-chevron-down">
  160. </i>
  161. </label>
  162. <ul>
  163. <li class="toctree-l2">
  164. <a class="reference internal" href="../lgssm/kalman_filter.html">
  165. Kalman filtering
  166. </a>
  167. </li>
  168. <li class="toctree-l2">
  169. <a class="reference internal" href="../lgssm/kalman_smoother.html">
  170. Kalman (RTS) smoother
  171. </a>
  172. </li>
  173. <li class="toctree-l2">
  174. <a class="reference internal" href="../lgssm/kalman_parallel.html">
  175. Parallel Kalman Smoother
  176. </a>
  177. </li>
  178. <li class="toctree-l2">
  179. <a class="reference internal" href="../lgssm/kalman_sampling.html">
  180. Forwards-filtering backwards sampling
  181. </a>
  182. </li>
  183. </ul>
  184. </li>
  185. <li class="toctree-l1 has-children">
  186. <a class="reference internal" href="../extended/extended_index.html">
  187. Extended (linearized) methods
  188. </a>
  189. <input class="toctree-checkbox" id="toctree-checkbox-4" name="toctree-checkbox-4" type="checkbox"/>
  190. <label for="toctree-checkbox-4">
  191. <i class="fas fa-chevron-down">
  192. </i>
  193. </label>
  194. <ul>
  195. <li class="toctree-l2">
  196. <a class="reference internal" href="../extended/extended_filter.html">
  197. Extended Kalman filtering
  198. </a>
  199. </li>
  200. <li class="toctree-l2">
  201. <a class="reference internal" href="../extended/extended_smoother.html">
  202. Extended Kalman smoother
  203. </a>
  204. </li>
  205. <li class="toctree-l2">
  206. <a class="reference internal" href="../extended/extended_parallel.html">
  207. Parallel extended Kalman smoothing
  208. </a>
  209. </li>
  210. </ul>
  211. </li>
  212. <li class="toctree-l1 has-children">
  213. <a class="reference internal" href="../unscented/unscented_index.html">
  214. Unscented methods
  215. </a>
  216. <input class="toctree-checkbox" id="toctree-checkbox-5" name="toctree-checkbox-5" type="checkbox"/>
  217. <label for="toctree-checkbox-5">
  218. <i class="fas fa-chevron-down">
  219. </i>
  220. </label>
  221. <ul>
  222. <li class="toctree-l2">
  223. <a class="reference internal" href="../unscented/unscented_filter.html">
  224. Unscented filtering
  225. </a>
  226. </li>
  227. <li class="toctree-l2">
  228. <a class="reference internal" href="../unscented/unscented_smoother.html">
  229. Unscented smoothing
  230. </a>
  231. </li>
  232. </ul>
  233. </li>
  234. <li class="toctree-l1">
  235. <a class="reference internal" href="../quadrature/quadrature_index.html">
  236. Quadrature and cubature methods
  237. </a>
  238. </li>
  239. <li class="toctree-l1">
  240. <a class="reference internal" href="../postlin/postlin_index.html">
  241. Posterior linearization
  242. </a>
  243. </li>
  244. <li class="toctree-l1">
  245. <a class="reference internal" href="../adf/adf_index.html">
  246. Assumed Density Filtering
  247. </a>
  248. </li>
  249. <li class="toctree-l1">
  250. <a class="reference internal" href="../vi/vi_index.html">
  251. Variational inference
  252. </a>
  253. </li>
  254. <li class="toctree-l1">
  255. <a class="reference internal" href="../pf/pf_index.html">
  256. Particle filtering
  257. </a>
  258. </li>
  259. <li class="toctree-l1">
  260. <a class="reference internal" href="../smc/smc_index.html">
  261. Sequential Monte Carlo
  262. </a>
  263. </li>
  264. <li class="toctree-l1">
  265. <a class="reference internal" href="../learning/learning_index.html">
  266. Offline parameter estimation (learning)
  267. </a>
  268. </li>
  269. <li class="toctree-l1">
  270. <a class="reference internal" href="../tracking/tracking_index.html">
  271. Multi-target tracking
  272. </a>
  273. </li>
  274. <li class="toctree-l1">
  275. <a class="reference internal" href="../ensemble/ensemble_index.html">
  276. Data assimilation using Ensemble Kalman filter
  277. </a>
  278. </li>
  279. <li class="toctree-l1">
  280. <a class="reference internal" href="../bnp/bnp_index.html">
  281. Bayesian non-parametric SSMs
  282. </a>
  283. </li>
  284. <li class="toctree-l1">
  285. <a class="reference internal" href="../changepoint/changepoint_index.html">
  286. Changepoint detection
  287. </a>
  288. </li>
  289. <li class="toctree-l1">
  290. <a class="reference internal" href="../timeseries/timeseries_index.html">
  291. Timeseries forecasting
  292. </a>
  293. </li>
  294. <li class="toctree-l1">
  295. <a class="reference internal" href="../gp/gp_index.html">
  296. Markovian Gaussian processes
  297. </a>
  298. </li>
  299. <li class="toctree-l1">
  300. <a class="reference internal" href="../ode/ode_index.html">
  301. Differential equations and SSMs
  302. </a>
  303. </li>
  304. <li class="toctree-l1">
  305. <a class="reference internal" href="../control/control_index.html">
  306. Optimal control
  307. </a>
  308. </li>
  309. <li class="toctree-l1">
  310. <a class="reference internal" href="../../bib.html">
  311. Bibliography
  312. </a>
  313. </li>
  314. </ul>
  315. </div>
  316. </nav> <!-- To handle the deprecated key -->
  317. <div class="navbar_extra_footer">
  318. Powered by <a href="https://jupyterbook.org">Jupyter Book</a>
  319. </div>
  320. </div>
  321. <main class="col py-md-3 pl-md-4 bd-content overflow-auto" role="main">
  322. <div class="topbar container-xl fixed-top">
  323. <div class="topbar-contents row">
  324. <div class="col-12 col-md-3 bd-topbar-whitespace site-navigation show"></div>
  325. <div class="col pl-md-4 topbar-main">
  326. <button id="navbar-toggler" class="navbar-toggler ml-0" type="button" data-toggle="collapse"
  327. data-toggle="tooltip" data-placement="bottom" data-target=".site-navigation" aria-controls="navbar-menu"
  328. aria-expanded="true" aria-label="Toggle navigation" aria-controls="site-navigation"
  329. title="Toggle navigation" data-toggle="tooltip" data-placement="left">
  330. <i class="fas fa-bars"></i>
  331. <i class="fas fa-arrow-left"></i>
  332. <i class="fas fa-arrow-up"></i>
  333. </button>
  334. <div class="dropdown-buttons-trigger">
  335. <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn" aria-label="Download this page"><i
  336. class="fas fa-download"></i></button>
  337. <div class="dropdown-buttons">
  338. <!-- ipynb file if we had a myst markdown file -->
  339. <!-- Download raw file -->
  340. <a class="dropdown-buttons" href="../../_sources/chapters/ssm/learning.ipynb"><button type="button"
  341. class="btn btn-secondary topbarbtn" title="Download source file" data-toggle="tooltip"
  342. data-placement="left">.ipynb</button></a>
  343. <!-- Download PDF via print -->
  344. <button type="button" id="download-print" class="btn btn-secondary topbarbtn" title="Print to PDF"
  345. onclick="printPdf(this)" data-toggle="tooltip" data-placement="left">.pdf</button>
  346. </div>
  347. </div>
  348. <!-- Source interaction buttons -->
  349. <div class="dropdown-buttons-trigger">
  350. <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
  351. aria-label="Connect with source repository"><i class="fab fa-github"></i></button>
  352. <div class="dropdown-buttons sourcebuttons">
  353. <a class="repository-button"
  354. href="https://github.com/probml/ssm-book"><button type="button" class="btn btn-secondary topbarbtn"
  355. data-toggle="tooltip" data-placement="left" title="Source repository"><i
  356. class="fab fa-github"></i>repository</button></a>
  357. <a class="issues-button"
  358. href="https://github.com/probml/ssm-book/issues/new?title=Issue%20on%20page%20%2Fchapters/ssm/learning.html&body=Your%20issue%20content%20here."><button
  359. type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip" data-placement="left"
  360. title="Open an issue"><i class="fas fa-lightbulb"></i>open issue</button></a>
  361. </div>
  362. </div>
  363. <!-- Full screen (wrap in <a> to have style consistency -->
  364. <a class="full-screen-button"><button type="button" class="btn btn-secondary topbarbtn" data-toggle="tooltip"
  365. data-placement="bottom" onclick="toggleFullScreen()" aria-label="Fullscreen mode"
  366. title="Fullscreen mode"><i
  367. class="fas fa-expand"></i></button></a>
  368. <!-- Launch buttons -->
  369. <div class="dropdown-buttons-trigger">
  370. <button id="dropdown-buttons-trigger" class="btn btn-secondary topbarbtn"
  371. aria-label="Launch interactive content"><i class="fas fa-rocket"></i></button>
  372. <div class="dropdown-buttons">
  373. <a class="binder-button" href="https://mybinder.org/v2/gh/probml/ssm-book/main?urlpath=tree/chapters/ssm/learning.ipynb"><button type="button"
  374. class="btn btn-secondary topbarbtn" title="Launch Binder" data-toggle="tooltip"
  375. data-placement="left"><img class="binder-button-logo"
  376. src="../../_static/images/logo_binder.svg"
  377. alt="Interact on binder">Binder</button></a>
  378. <a class="colab-button" href="https://colab.research.google.com/github/probml/ssm-book/blob/main/chapters/ssm/learning.ipynb"><button type="button" class="btn btn-secondary topbarbtn"
  379. title="Launch Colab" data-toggle="tooltip" data-placement="left"><img class="colab-button-logo"
  380. src="../../_static/images/logo_colab.png"
  381. alt="Interact on Colab">Colab</button></a>
  382. </div>
  383. </div>
  384. </div>
  385. <!-- Table of contents -->
  386. <div class="d-none d-md-block col-md-2 bd-toc show noprint">
  387. </div>
  388. </div>
  389. </div>
  390. <div id="main-content" class="row">
  391. <div class="col-12 col-md-9 pl-md-3 pr-md-0">
  392. <!-- Table of contents that is only displayed when printing the page -->
  393. <div id="jb-print-docs-body" class="onlyprint">
  394. <h1>Parameter estimation (learning)</h1>
  395. <!-- Table of contents -->
  396. <div id="print-main-content">
  397. <div id="jb-print-toc">
  398. </div>
  399. </div>
  400. </div>
  401. <div>
  402. <div class="cell docutils container">
  403. <div class="cell_input docutils container">
  404. <div class="highlight-ipython3 notranslate"><div class="highlight"><pre><span></span><span class="c1">### Import standard libraries</span>
  405. <span class="kn">import</span> <span class="nn">abc</span>
  406. <span class="kn">from</span> <span class="nn">dataclasses</span> <span class="kn">import</span> <span class="n">dataclass</span>
  407. <span class="kn">import</span> <span class="nn">functools</span>
  408. <span class="kn">from</span> <span class="nn">functools</span> <span class="kn">import</span> <span class="n">partial</span>
  409. <span class="kn">import</span> <span class="nn">itertools</span>
  410. <span class="kn">import</span> <span class="nn">matplotlib.pyplot</span> <span class="k">as</span> <span class="nn">plt</span>
  411. <span class="kn">import</span> <span class="nn">numpy</span> <span class="k">as</span> <span class="nn">np</span>
  412. <span class="kn">from</span> <span class="nn">typing</span> <span class="kn">import</span> <span class="n">Any</span><span class="p">,</span> <span class="n">Callable</span><span class="p">,</span> <span class="n">NamedTuple</span><span class="p">,</span> <span class="n">Optional</span><span class="p">,</span> <span class="n">Union</span><span class="p">,</span> <span class="n">Tuple</span>
  413. <span class="kn">import</span> <span class="nn">jax</span>
  414. <span class="kn">import</span> <span class="nn">jax.numpy</span> <span class="k">as</span> <span class="nn">jnp</span>
  415. <span class="kn">from</span> <span class="nn">jax</span> <span class="kn">import</span> <span class="n">lax</span><span class="p">,</span> <span class="n">vmap</span><span class="p">,</span> <span class="n">jit</span><span class="p">,</span> <span class="n">grad</span>
  416. <span class="c1">#from jax.scipy.special import logit</span>
  417. <span class="c1">#from jax.nn import softmax</span>
  418. <span class="kn">import</span> <span class="nn">jax.random</span> <span class="k">as</span> <span class="nn">jr</span>
  419. <span class="kn">import</span> <span class="nn">distrax</span>
  420. <span class="kn">import</span> <span class="nn">optax</span>
  421. <span class="kn">import</span> <span class="nn">jsl</span>
  422. <span class="kn">import</span> <span class="nn">ssm_jax</span>
  423. </pre></div>
  424. </div>
  425. </div>
  426. </div>
  427. <div class="tex2jax_ignore mathjax_ignore section" id="parameter-estimation-learning">
  428. <span id="sec-learning"></span><h1>Parameter estimation (learning)<a class="headerlink" href="#parameter-estimation-learning" title="Permalink to this headline">¶</a></h1>
  429. <p>So far, we have assumed that the parameters <span class="math notranslate nohighlight">\(\params\)</span> of the SSM are known.
  430. For example, in the case of an HMM with categorical observations
  431. we have <span class="math notranslate nohighlight">\(\params = (\hmmInit, \hmmTrans, \hmmObs)\)</span>,
  432. and in the case of an LDS, we have <span class="math notranslate nohighlight">\(\params =
  433. (\ldsTrans, \ldsObs, \ldsTransIn, \ldsObsIn, \transCov, \obsCov, \initMean, \initCov)\)</span>.
  434. If we adopt a Bayesian perspective, we can view these parameters as random variables that are
  435. shared across all time steps, and across all sequences.
  436. This is shown in <a class="reference internal" href="#fig-hmm-plates"><span class="std std-numref">Fig. 6</span></a>, where we adopt <span class="math notranslate nohighlight">\(\keyword{plate notation}\)</span>
  437. to represent repetitive structure.</p>
  438. <div class="figure align-default" id="fig-hmm-plates">
  439. <a class="reference internal image-reference" href="../../_images/hmmDgmPlatesY.png"><img alt="../../_images/hmmDgmPlatesY.png" src="../../_images/hmmDgmPlatesY.png" style="width: 285.0px; height: 236.0px;" /></a>
  440. <p class="caption"><span class="caption-number">Fig. 6 </span><span class="caption-text">Illustration of an HMM using plate notation, where we show the parameter
  441. nodes which are shared across all the sequences.</span><a class="headerlink" href="#fig-hmm-plates" title="Permalink to this image">¶</a></p>
  442. </div>
  443. <p>Suppose we observe <span class="math notranslate nohighlight">\(N\)</span> sequences <span class="math notranslate nohighlight">\(\data = \{\obs_{n,1:T_n}: n=1:N\}\)</span>.
  444. Then the goal of <span class="math notranslate nohighlight">\(\keyword{parameter estimation}\)</span>, also called <span class="math notranslate nohighlight">\(\keyword{model learning}\)</span>
  445. or <span class="math notranslate nohighlight">\(\keyword{model fitting}\)</span>, is to approximate the posterior</p>
  446. <div class="amsmath math notranslate nohighlight" id="equation-aeba05bd-181c-4460-a520-00ce9651ff39">
  447. <span class="eqno">(17)<a class="headerlink" href="#equation-aeba05bd-181c-4460-a520-00ce9651ff39" title="Permalink to this equation">¶</a></span>\[\begin{align}
  448. p(\params|\data) \propto p(\params) \prod_{n=1}^N p(\obs_{n,1:T_n} | \params)
  449. \end{align}\]</div>
  450. <p>where <span class="math notranslate nohighlight">\(p(\obs_{n,1:T_n} | \params)\)</span> is the marginal likelihood of sequence <span class="math notranslate nohighlight">\(n\)</span>:</p>
  451. <div class="amsmath math notranslate nohighlight" id="equation-45323cdb-e343-4539-84fc-8bfb3adf2c7e">
  452. <span class="eqno">(18)<a class="headerlink" href="#equation-45323cdb-e343-4539-84fc-8bfb3adf2c7e" title="Permalink to this equation">¶</a></span>\[\begin{align}
  453. p(\obs_{1:T} | \params) = \int p(\hidden_{1:T}, \obs_{1:T} | \params) d\hidden_{1:T}
  454. \end{align}\]</div>
  455. <p>Since computing the full posterior is computationally difficult, we often settle for computing
  456. a point estimate such as the MAP (maximum a posterior) estimate</p>
  457. <div class="amsmath math notranslate nohighlight" id="equation-430a5016-7826-4b1a-b76a-b25346317ded">
  458. <span class="eqno">(19)<a class="headerlink" href="#equation-430a5016-7826-4b1a-b76a-b25346317ded" title="Permalink to this equation">¶</a></span>\[\begin{align}
  459. \params_{\map} = \arg \max_{\params} \log p(\params) + \sum_{n=1}^N \log p(\obs_{n,1:T_n} | \params)
  460. \end{align}\]</div>
  461. <p>If we ignore the prior term, we get the maximum likelihood estimate or MLE:</p>
  462. <div class="amsmath math notranslate nohighlight" id="equation-466da0d8-afab-49ab-a6ec-f804e2279fb0">
  463. <span class="eqno">(20)<a class="headerlink" href="#equation-466da0d8-afab-49ab-a6ec-f804e2279fb0" title="Permalink to this equation">¶</a></span>\[\begin{align}
  464. \params_{\mle} = \arg \max_{\params} \sum_{n=1}^N \log p(\obs_{n,1:T_n} | \params)
  465. \end{align}\]</div>
  466. <p>In practice, the MAP estimate often works better than the MLE, since the prior can regularize
  467. the estimate to ensure the model is numerically stable and does not overfit the training set.</p>
  468. <p>We will discuss a variety of algorithms for parameter estimation in later chapters.</p>
  469. </div>
  470. <script type="text/x-thebe-config">
  471. {
  472. requestKernel: true,
  473. binderOptions: {
  474. repo: "binder-examples/jupyter-stacks-datascience",
  475. ref: "master",
  476. },
  477. codeMirrorConfig: {
  478. theme: "abcdef",
  479. mode: "python"
  480. },
  481. kernelOptions: {
  482. kernelName: "python3",
  483. path: "./chapters/ssm"
  484. },
  485. predefinedOutput: true
  486. }
  487. </script>
  488. <script>kernelName = 'python3'</script>
  489. </div>
  490. <!-- Previous / next buttons -->
  491. <div class='prev-next-area'>
  492. <a class='left-prev' id="prev-link" href="inference.html" title="previous page">
  493. <i class="fas fa-angle-left"></i>
  494. <div class="prev-next-info">
  495. <p class="prev-next-subtitle">previous</p>
  496. <p class="prev-next-title">States estimation (inference)</p>
  497. </div>
  498. </a>
  499. <a class='right-next' id="next-link" href="../hmm/hmm_index.html" title="next page">
  500. <div class="prev-next-info">
  501. <p class="prev-next-subtitle">next</p>
  502. <p class="prev-next-title">Hidden Markov Models</p>
  503. </div>
  504. <i class="fas fa-angle-right"></i>
  505. </a>
  506. </div>
  507. </div>
  508. </div>
  509. <footer class="footer">
  510. <p>
  511. By Kevin Murphy, Scott Linderman, et al.<br/>
  512. &copy; Copyright 2021.<br/>
  513. </p>
  514. </footer>
  515. </main>
  516. </div>
  517. </div>
  518. <script src="../../_static/js/index.be7d3bbb2ef33a8344ce.js"></script>
  519. </body>
  520. </html>