|
@@ -82,7 +82,7 @@ real_image_input = tf.placeholder(tf.float32, shape=[None, 28, 28, 1])
|
|
|
# Build Generator Network
|
|
|
gen_sample = generator(noise_input)
|
|
|
|
|
|
-# Build 2 Discriminator Networks (one from noise input, one from generated samples)
|
|
|
+# Build 2 Discriminator Networks (one from real image input, one from generated samples)
|
|
|
disc_real = discriminator(real_image_input)
|
|
|
disc_fake = discriminator(gen_sample, reuse=True)
|
|
|
disc_concat = tf.concat([disc_real, disc_fake], axis=0)
|
|
@@ -135,7 +135,7 @@ with tf.Session() as sess:
|
|
|
z = np.random.uniform(-1., 1., size=[batch_size, noise_dim])
|
|
|
|
|
|
# Prepare Targets (Real image: 1, Fake image: 0)
|
|
|
- # The first half of data fed to the generator are real images,
|
|
|
+ # The first half of data fed to the discriminator are real images,
|
|
|
# the other half are fake images (coming from the generator).
|
|
|
batch_disc_y = np.concatenate(
|
|
|
[np.ones([batch_size]), np.zeros([batch_size])], axis=0)
|