|
@@ -0,0 +1,99 @@
|
|
|
+# Import MINST data
|
|
|
+import input_data
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+# Parameters
|
|
|
+learning_rate = 0.001
|
|
|
+training_iters = 200000
|
|
|
+batch_size = 64
|
|
|
+display_step = 20
|
|
|
+
|
|
|
+#Network Parameters
|
|
|
+n_input = 784 #MNIST data input
|
|
|
+n_classes = 10 #MNIST total classes
|
|
|
+dropout = 0.8
|
|
|
+
|
|
|
+# Create model
|
|
|
+x = tf.placeholder(tf.types.float32, [None, n_input])
|
|
|
+y = tf.placeholder(tf.types.float32, [None, n_classes])
|
|
|
+keep_prob = tf.placeholder(tf.types.float32) #dropout
|
|
|
+
|
|
|
+def conv2d(name, l_input, w, b):
|
|
|
+ return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
|
|
|
+
|
|
|
+def max_pool(name, l_input, k):
|
|
|
+ return tf.nn.max_pool(l_input, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME', name=name)
|
|
|
+
|
|
|
+def norm(name, l_input, lsize=4):
|
|
|
+ return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
|
|
|
+
|
|
|
+def conv_net(_X, _weights, _biases, _dropout):
|
|
|
+ _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
|
|
|
+
|
|
|
+ conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
|
|
|
+ pool1 = max_pool('pool1', conv1, k=2)
|
|
|
+ norm1 = norm('norm1', pool1, lsize=4)
|
|
|
+ norm1 = tf.nn.dropout(norm1, _dropout)
|
|
|
+
|
|
|
+ conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
|
|
|
+ pool2 = max_pool('pool2', conv2, k=2)
|
|
|
+ norm2 = norm('norm2', pool2, lsize=4)
|
|
|
+ norm2 = tf.nn.dropout(norm2, _dropout)
|
|
|
+
|
|
|
+ conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
|
|
|
+ pool3 = max_pool('pool3', conv3, k=2)
|
|
|
+ norm3 = norm('norm3', pool3, lsize=4)
|
|
|
+ norm3 = tf.nn.dropout(norm3, _dropout)
|
|
|
+
|
|
|
+ dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
|
|
|
+ dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
|
|
|
+
|
|
|
+ dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2')
|
|
|
+
|
|
|
+ out = tf.matmul(dense2, _weights['out']) + _biases['out']
|
|
|
+ return out
|
|
|
+
|
|
|
+weights = {
|
|
|
+ 'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
|
|
|
+ 'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
|
|
|
+ 'wc3': tf.Variable(tf.random_normal([3, 3, 128, 256])),
|
|
|
+ 'wd1': tf.Variable(tf.random_normal([4*4*256, 1024])),
|
|
|
+ 'wd2': tf.Variable(tf.random_normal([1024, 1024])),
|
|
|
+ 'out': tf.Variable(tf.random_normal([1024, 10]))
|
|
|
+}
|
|
|
+
|
|
|
+biases = {
|
|
|
+ 'bc1': tf.Variable(tf.random_normal([64])),
|
|
|
+ 'bc2': tf.Variable(tf.random_normal([128])),
|
|
|
+ 'bc3': tf.Variable(tf.random_normal([256])),
|
|
|
+ 'bd1': tf.Variable(tf.random_normal([1024])),
|
|
|
+ 'bd2': tf.Variable(tf.random_normal([1024])),
|
|
|
+ 'out': tf.Variable(tf.random_normal([n_classes]))
|
|
|
+}
|
|
|
+
|
|
|
+pred = conv_net(x, weights, biases, keep_prob)
|
|
|
+cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
|
|
|
+optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
|
|
|
+
|
|
|
+#Evaluate model
|
|
|
+correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
|
|
|
+accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
|
|
|
+
|
|
|
+# Train
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+ step = 1
|
|
|
+ while step * batch_size < training_iters:
|
|
|
+ batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
+ sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
|
|
|
+ if step % display_step == 0:
|
|
|
+ acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
|
|
|
+ loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
|
|
|
+ print "Iter " + str(step*batch_size) + ", Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
|
|
|
+ step += 1
|
|
|
+ print "Optimization Finished!"
|
|
|
+ #Accuracy on 256 mnist test images
|
|
|
+ print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
|