|
@@ -0,0 +1,144 @@
|
|
|
+"""Functions for downloading and reading MNIST data."""
|
|
|
+from __future__ import print_function
|
|
|
+import gzip
|
|
|
+import os
|
|
|
+import urllib
|
|
|
+import numpy
|
|
|
+SOURCE_URL = 'http://yann.lecun.com/exdb/mnist/'
|
|
|
+def maybe_download(filename, work_directory):
|
|
|
+ """Download the data from Yann's website, unless it's already here."""
|
|
|
+ if not os.path.exists(work_directory):
|
|
|
+ os.mkdir(work_directory)
|
|
|
+ filepath = os.path.join(work_directory, filename)
|
|
|
+ if not os.path.exists(filepath):
|
|
|
+ filepath, _ = urllib.urlretrieve(SOURCE_URL + filename, filepath)
|
|
|
+ statinfo = os.stat(filepath)
|
|
|
+ print('Succesfully downloaded', filename, statinfo.st_size, 'bytes.')
|
|
|
+ return filepath
|
|
|
+def _read32(bytestream):
|
|
|
+ dt = numpy.dtype(numpy.uint32).newbyteorder('>')
|
|
|
+ return numpy.frombuffer(bytestream.read(4), dtype=dt)
|
|
|
+def extract_images(filename):
|
|
|
+ """Extract the images into a 4D uint8 numpy array [index, y, x, depth]."""
|
|
|
+ print('Extracting', filename)
|
|
|
+ with gzip.open(filename) as bytestream:
|
|
|
+ magic = _read32(bytestream)
|
|
|
+ if magic != 2051:
|
|
|
+ raise ValueError(
|
|
|
+ 'Invalid magic number %d in MNIST image file: %s' %
|
|
|
+ (magic, filename))
|
|
|
+ num_images = _read32(bytestream)
|
|
|
+ rows = _read32(bytestream)
|
|
|
+ cols = _read32(bytestream)
|
|
|
+ buf = bytestream.read(rows * cols * num_images)
|
|
|
+ data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
|
|
+ data = data.reshape(num_images, rows, cols, 1)
|
|
|
+ return data
|
|
|
+def dense_to_one_hot(labels_dense, num_classes=10):
|
|
|
+ """Convert class labels from scalars to one-hot vectors."""
|
|
|
+ num_labels = labels_dense.shape[0]
|
|
|
+ index_offset = numpy.arange(num_labels) * num_classes
|
|
|
+ labels_one_hot = numpy.zeros((num_labels, num_classes))
|
|
|
+ labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
|
|
+ return labels_one_hot
|
|
|
+def extract_labels(filename, one_hot=False):
|
|
|
+ """Extract the labels into a 1D uint8 numpy array [index]."""
|
|
|
+ print('Extracting', filename)
|
|
|
+ with gzip.open(filename) as bytestream:
|
|
|
+ magic = _read32(bytestream)
|
|
|
+ if magic != 2049:
|
|
|
+ raise ValueError(
|
|
|
+ 'Invalid magic number %d in MNIST label file: %s' %
|
|
|
+ (magic, filename))
|
|
|
+ num_items = _read32(bytestream)
|
|
|
+ buf = bytestream.read(num_items)
|
|
|
+ labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
|
|
+ if one_hot:
|
|
|
+ return dense_to_one_hot(labels)
|
|
|
+ return labels
|
|
|
+class DataSet(object):
|
|
|
+ def __init__(self, images, labels, fake_data=False):
|
|
|
+ if fake_data:
|
|
|
+ self._num_examples = 10000
|
|
|
+ else:
|
|
|
+ assert images.shape[0] == labels.shape[0], (
|
|
|
+ "images.shape: %s labels.shape: %s" % (images.shape,
|
|
|
+ labels.shape))
|
|
|
+ self._num_examples = images.shape[0]
|
|
|
+ # Convert shape from [num examples, rows, columns, depth]
|
|
|
+ # to [num examples, rows*columns] (assuming depth == 1)
|
|
|
+ assert images.shape[3] == 1
|
|
|
+ images = images.reshape(images.shape[0],
|
|
|
+ images.shape[1] * images.shape[2])
|
|
|
+ # Convert from [0, 255] -> [0.0, 1.0].
|
|
|
+ images = images.astype(numpy.float32)
|
|
|
+ images = numpy.multiply(images, 1.0 / 255.0)
|
|
|
+ self._images = images
|
|
|
+ self._labels = labels
|
|
|
+ self._epochs_completed = 0
|
|
|
+ self._index_in_epoch = 0
|
|
|
+ @property
|
|
|
+ def images(self):
|
|
|
+ return self._images
|
|
|
+ @property
|
|
|
+ def labels(self):
|
|
|
+ return self._labels
|
|
|
+ @property
|
|
|
+ def num_examples(self):
|
|
|
+ return self._num_examples
|
|
|
+ @property
|
|
|
+ def epochs_completed(self):
|
|
|
+ return self._epochs_completed
|
|
|
+ def next_batch(self, batch_size, fake_data=False):
|
|
|
+ """Return the next `batch_size` examples from this data set."""
|
|
|
+ if fake_data:
|
|
|
+ fake_image = [1.0 for _ in xrange(784)]
|
|
|
+ fake_label = 0
|
|
|
+ return [fake_image for _ in xrange(batch_size)], [
|
|
|
+ fake_label for _ in xrange(batch_size)]
|
|
|
+ start = self._index_in_epoch
|
|
|
+ self._index_in_epoch += batch_size
|
|
|
+ if self._index_in_epoch > self._num_examples:
|
|
|
+ # Finished epoch
|
|
|
+ self._epochs_completed += 1
|
|
|
+ # Shuffle the data
|
|
|
+ perm = numpy.arange(self._num_examples)
|
|
|
+ numpy.random.shuffle(perm)
|
|
|
+ self._images = self._images[perm]
|
|
|
+ self._labels = self._labels[perm]
|
|
|
+ # Start next epoch
|
|
|
+ start = 0
|
|
|
+ self._index_in_epoch = batch_size
|
|
|
+ assert batch_size <= self._num_examples
|
|
|
+ end = self._index_in_epoch
|
|
|
+ return self._images[start:end], self._labels[start:end]
|
|
|
+def read_data_sets(train_dir, fake_data=False, one_hot=False):
|
|
|
+ class DataSets(object):
|
|
|
+ pass
|
|
|
+ data_sets = DataSets()
|
|
|
+ if fake_data:
|
|
|
+ data_sets.train = DataSet([], [], fake_data=True)
|
|
|
+ data_sets.validation = DataSet([], [], fake_data=True)
|
|
|
+ data_sets.test = DataSet([], [], fake_data=True)
|
|
|
+ return data_sets
|
|
|
+ TRAIN_IMAGES = 'train-images-idx3-ubyte.gz'
|
|
|
+ TRAIN_LABELS = 'train-labels-idx1-ubyte.gz'
|
|
|
+ TEST_IMAGES = 't10k-images-idx3-ubyte.gz'
|
|
|
+ TEST_LABELS = 't10k-labels-idx1-ubyte.gz'
|
|
|
+ VALIDATION_SIZE = 5000
|
|
|
+ local_file = maybe_download(TRAIN_IMAGES, train_dir)
|
|
|
+ train_images = extract_images(local_file)
|
|
|
+ local_file = maybe_download(TRAIN_LABELS, train_dir)
|
|
|
+ train_labels = extract_labels(local_file, one_hot=one_hot)
|
|
|
+ local_file = maybe_download(TEST_IMAGES, train_dir)
|
|
|
+ test_images = extract_images(local_file)
|
|
|
+ local_file = maybe_download(TEST_LABELS, train_dir)
|
|
|
+ test_labels = extract_labels(local_file, one_hot=one_hot)
|
|
|
+ validation_images = train_images[:VALIDATION_SIZE]
|
|
|
+ validation_labels = train_labels[:VALIDATION_SIZE]
|
|
|
+ train_images = train_images[VALIDATION_SIZE:]
|
|
|
+ train_labels = train_labels[VALIDATION_SIZE:]
|
|
|
+ data_sets.train = DataSet(train_images, train_labels)
|
|
|
+ data_sets.validation = DataSet(validation_images, validation_labels)
|
|
|
+ data_sets.test = DataSet(test_images, test_labels)
|
|
|
+ return data_sets
|