|
@@ -0,0 +1,86 @@
|
|
|
+'''
|
|
|
+Loss Visualization with TensorFlow.
|
|
|
+This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
|
|
|
+
|
|
|
+Author: Aymeric Damien
|
|
|
+Project: https://github.com/aymericdamien/TensorFlow-Examples/
|
|
|
+'''
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+import numpy
|
|
|
+
|
|
|
+# Import MINST data
|
|
|
+import input_data
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
+
|
|
|
+# Use Logistic Regression from our previous example
|
|
|
+
|
|
|
+# Parameters
|
|
|
+learning_rate = 0.01
|
|
|
+training_epochs = 10
|
|
|
+batch_size = 100
|
|
|
+display_step = 1
|
|
|
+
|
|
|
+# tf Graph Input
|
|
|
+x = tf.placeholder("float", [None, 784], name='x') # mnist data image of shape 28*28=784
|
|
|
+y = tf.placeholder("float", [None, 10], name='y') # 0-9 digits recognition => 10 classes
|
|
|
+
|
|
|
+# Create model
|
|
|
+
|
|
|
+# Set model weights
|
|
|
+W = tf.Variable(tf.zeros([784, 10]), name="weights")
|
|
|
+b = tf.Variable(tf.zeros([10]), name="bias")
|
|
|
+
|
|
|
+# Construct model
|
|
|
+activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
|
|
|
+
|
|
|
+# Minimize error using cross entropy
|
|
|
+cost = -tf.reduce_sum(y*tf.log(activation)) # Cross entropy
|
|
|
+optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Gradient Descent
|
|
|
+
|
|
|
+# Initializing the variables
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+
|
|
|
+# Create a summary to monitor cost function
|
|
|
+tf.scalar_summary("loss", cost)
|
|
|
+
|
|
|
+# Merge all summaries to a single operator
|
|
|
+merged_summary_op = tf.merge_all_summaries()
|
|
|
+
|
|
|
+# Launch the graph
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+
|
|
|
+ # Set logs writer into folder /tmp/tensorflow_logs
|
|
|
+ summary_writer = tf.train.SummaryWriter('/tmp/tensorflow_logs', graph_def=sess.graph_def)
|
|
|
+
|
|
|
+ # Training cycle
|
|
|
+ for epoch in range(training_epochs):
|
|
|
+ avg_cost = 0.
|
|
|
+ total_batch = int(mnist.train.num_examples/batch_size)
|
|
|
+ # Loop over all batches
|
|
|
+ for i in range(total_batch):
|
|
|
+ batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
+ # Fit training using batch data
|
|
|
+ sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
|
|
|
+ # Compute average loss
|
|
|
+ avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
|
|
|
+ # Write logs at every iteration
|
|
|
+ summary_str = sess.run(merged_summary_op, feed_dict={x: batch_xs, y: batch_ys})
|
|
|
+ summary_writer.add_summary(summary_str, epoch*total_batch + i)
|
|
|
+ # Display logs per epoch step
|
|
|
+ if epoch % display_step == 0:
|
|
|
+ print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
|
|
|
+
|
|
|
+ print "Optimization Finished!"
|
|
|
+
|
|
|
+ # Test model
|
|
|
+ correct_prediction = tf.equal(tf.argmax(activation, 1), tf.argmax(y, 1))
|
|
|
+ # Calculate accuracy
|
|
|
+ accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
|
|
|
+ print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
|
|
|
+
|
|
|
+'''
|
|
|
+Run the command line: tensorboard --logdir=/tmp/tensorflow
|
|
|
+Open http://localhost:6006/ into your web browser
|
|
|
+'''
|