|
@@ -56,8 +56,7 @@
|
|
|
"X = np.array([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,\n",
|
|
|
" 7.042,10.791,5.313,7.997,5.654,9.27,3.1])\n",
|
|
|
"Y = np.array([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,\n",
|
|
|
- " 2.827,3.465,1.65,2.904,2.42,2.94,1.3])\n",
|
|
|
- "n_samples = X.shape[0]"
|
|
|
+ " 2.827,3.465,1.65,2.904,2.42,2.94,1.3])\n"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
@@ -76,7 +75,7 @@
|
|
|
"\n",
|
|
|
"# Mean square error.\n",
|
|
|
"def mean_square(y_pred, y_true):\n",
|
|
|
- " return tf.reduce_sum(tf.pow(y_pred-y_true, 2)) / (2 * n_samples)\n",
|
|
|
+ " return tf.reduce_mean(tf.square(y_pred - y_true))\n",
|
|
|
"\n",
|
|
|
"# Stochastic Gradient Descent Optimizer.\n",
|
|
|
"optimizer = tf.optimizers.SGD(learning_rate)"
|