|
@@ -0,0 +1,40 @@
|
|
|
+'''
|
|
|
+Nearest Neighbor classification on MNIST with TensorFlow
|
|
|
+'''
|
|
|
+import numpy as np
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+# Import MINST data
|
|
|
+import input_data
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
+
|
|
|
+#In this example, we limit mnist data
|
|
|
+Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates)
|
|
|
+Xte, Yte = mnist.test.next_batch(200) #200 for testing
|
|
|
+
|
|
|
+Xtr = np.reshape(Xtr, newshape=(-1, 28*28))
|
|
|
+Xte = np.reshape(Xte, newshape=(-1, 28*28))
|
|
|
+
|
|
|
+xtr = tf.placeholder("float", [None, 784])
|
|
|
+xte = tf.placeholder("float", [784])
|
|
|
+
|
|
|
+nn = tf.Variable(tf.zeros([10]))
|
|
|
+
|
|
|
+#Calculation of L1 Distance
|
|
|
+distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.neg(xte))), reduction_indices=1)
|
|
|
+#Predict: Get min distance index (Nearest neighbor)
|
|
|
+pred = tf.arg_min(distance, 0)
|
|
|
+
|
|
|
+accuracy = 0.
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+ for i in range(len(Xte)):
|
|
|
+ nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i,:]})
|
|
|
+ #Get nn class label and compare it to its true label
|
|
|
+ print "Test", i, "Prediction:", np.argmax(Ytr[nn_index]), "True Class:", np.argmax(Yte[i])
|
|
|
+ if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]):
|
|
|
+ accuracy += 1./len(Xte)
|
|
|
+ print "Done!"
|
|
|
+ print "Accuracy:", accuracy
|
|
|
+
|