|
@@ -46,7 +46,7 @@ def conv_net(x_dict, n_classes, dropout, reuse, is_training):
|
|
|
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
|
|
|
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
|
|
|
|
|
|
- # Convolution Layer with 32 filters and a kernel size of 5
|
|
|
+ # Convolution Layer with 64 filters and a kernel size of 3
|
|
|
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
|
|
|
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
|
|
|
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
|