|
@@ -32,7 +32,7 @@ b = tf.Variable(tf.zeros([10]))
|
|
|
activation = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax
|
|
|
|
|
|
# Minimize error using cross entropy
|
|
|
-cost = -tf.reduce_sum(y*tf.log(activation)) # Cross entropy
|
|
|
+cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(activation), reduction_indices=1)) # Cross entropy
|
|
|
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # Gradient Descent
|
|
|
|
|
|
# Initializing the variables
|