|
@@ -32,7 +32,7 @@ y = tf.placeholder("float", [None, n_classes])
|
|
|
def multilayer_perceptron(_X, _weights, _biases):
|
|
|
layer_1 = tf.nn.relu(tf.add(tf.matmul(_X, _weights['h1']), _biases['b1'])) #Hidden layer with RELU activation
|
|
|
layer_2 = tf.nn.relu(tf.add(tf.matmul(layer_1, _weights['h2']), _biases['b2'])) #Hidden layer with RELU activation
|
|
|
- return tf.matmul(layer_2, weights['out']) + biases['out']
|
|
|
+ return tf.matmul(layer_2, _weights['out']) + _biases['out']
|
|
|
|
|
|
# Store layers weight & bias
|
|
|
weights = {
|