|
@@ -18,7 +18,7 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 2,
|
|
|
+ "execution_count": 1,
|
|
|
"metadata": {
|
|
|
"collapsed": false
|
|
|
},
|
|
@@ -27,10 +27,10 @@
|
|
|
"name": "stdout",
|
|
|
"output_type": "stream",
|
|
|
"text": [
|
|
|
- "Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
|
|
|
+ "Extracting MNIST_data/train-images-idx3-ubyte.gz\n",
|
|
|
+ "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n",
|
|
|
+ "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n",
|
|
|
+ "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n"
|
|
|
]
|
|
|
}
|
|
|
],
|
|
@@ -39,14 +39,14 @@
|
|
|
"\n",
|
|
|
"# Import MINST data\n",
|
|
|
"from tensorflow.examples.tutorials.mnist import input_data\n",
|
|
|
- "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
|
|
|
+ "mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot=True)"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": 3,
|
|
|
"metadata": {
|
|
|
- "collapsed": true
|
|
|
+ "collapsed": false
|
|
|
},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
@@ -73,12 +73,12 @@
|
|
|
"optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n",
|
|
|
"\n",
|
|
|
"# Initializing the variables\n",
|
|
|
- "init = tf.initialize_all_variables()"
|
|
|
+ "init = tf.global_variables_initializer()"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 4,
|
|
|
+ "execution_count": null,
|
|
|
"metadata": {
|
|
|
"collapsed": false
|
|
|
},
|
|
@@ -87,33 +87,23 @@
|
|
|
"name": "stdout",
|
|
|
"output_type": "stream",
|
|
|
"text": [
|
|
|
- "Epoch: 0001 cost= 1.182138961\n",
|
|
|
- "Epoch: 0002 cost= 0.664670898\n",
|
|
|
- "Epoch: 0003 cost= 0.552613988\n",
|
|
|
- "Epoch: 0004 cost= 0.498497931\n",
|
|
|
- "Epoch: 0005 cost= 0.465418769\n",
|
|
|
- "Epoch: 0006 cost= 0.442546219\n",
|
|
|
- "Epoch: 0007 cost= 0.425473814\n",
|
|
|
- "Epoch: 0008 cost= 0.412171735\n",
|
|
|
- "Epoch: 0009 cost= 0.401359516\n",
|
|
|
- "Epoch: 0010 cost= 0.392401536\n",
|
|
|
- "Epoch: 0011 cost= 0.384750201\n",
|
|
|
- "Epoch: 0012 cost= 0.378185581\n",
|
|
|
- "Epoch: 0013 cost= 0.372401533\n",
|
|
|
- "Epoch: 0014 cost= 0.367302442\n",
|
|
|
- "Epoch: 0015 cost= 0.362702316\n",
|
|
|
- "Epoch: 0016 cost= 0.358568827\n",
|
|
|
- "Epoch: 0017 cost= 0.354882155\n",
|
|
|
- "Epoch: 0018 cost= 0.351430912\n",
|
|
|
- "Epoch: 0019 cost= 0.348316068\n",
|
|
|
- "Epoch: 0020 cost= 0.345392556\n",
|
|
|
- "Epoch: 0021 cost= 0.342737278\n",
|
|
|
- "Epoch: 0022 cost= 0.340264994\n",
|
|
|
- "Epoch: 0023 cost= 0.337890242\n",
|
|
|
- "Epoch: 0024 cost= 0.335708558\n",
|
|
|
- "Epoch: 0025 cost= 0.333686476\n",
|
|
|
- "Optimization Finished!\n",
|
|
|
- "Accuracy: 0.889667\n"
|
|
|
+ "Epoch: 0001 cost= 1.182138959\n",
|
|
|
+ "Epoch: 0002 cost= 0.664778162\n",
|
|
|
+ "Epoch: 0003 cost= 0.552686284\n",
|
|
|
+ "Epoch: 0004 cost= 0.498628905\n",
|
|
|
+ "Epoch: 0005 cost= 0.465469866\n",
|
|
|
+ "Epoch: 0006 cost= 0.442537872\n",
|
|
|
+ "Epoch: 0007 cost= 0.425462044\n",
|
|
|
+ "Epoch: 0008 cost= 0.412185303\n",
|
|
|
+ "Epoch: 0009 cost= 0.401311587\n",
|
|
|
+ "Epoch: 0010 cost= 0.392326203\n",
|
|
|
+ "Epoch: 0011 cost= 0.384736038\n",
|
|
|
+ "Epoch: 0012 cost= 0.378137191\n",
|
|
|
+ "Epoch: 0013 cost= 0.372363752\n",
|
|
|
+ "Epoch: 0014 cost= 0.367308579\n",
|
|
|
+ "Epoch: 0015 cost= 0.362704660\n",
|
|
|
+ "Epoch: 0016 cost= 0.358588599\n",
|
|
|
+ "Epoch: 0017 cost= 0.354823110\n"
|
|
|
]
|
|
|
}
|
|
|
],
|
|
@@ -146,6 +136,15 @@
|
|
|
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))\n",
|
|
|
" print \"Accuracy:\", accuracy.eval({x: mnist.test.images[:3000], y: mnist.test.labels[:3000]})"
|
|
|
]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": true
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
}
|
|
|
],
|
|
|
"metadata": {
|
|
@@ -157,16 +156,16 @@
|
|
|
"language_info": {
|
|
|
"codemirror_mode": {
|
|
|
"name": "ipython",
|
|
|
- "version": 2.0
|
|
|
+ "version": 2
|
|
|
},
|
|
|
"file_extension": ".py",
|
|
|
"mimetype": "text/x-python",
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython2",
|
|
|
- "version": "2.7.11"
|
|
|
+ "version": "2.7.13"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|
|
|
"nbformat_minor": 0
|
|
|
-}
|
|
|
+}
|