Kaynağa Gözat

add eager API

aymericdamien 7 yıl önce
ebeveyn
işleme
821768abe6
1 değiştirilmiş dosya ile 5 ekleme ve 1 silme
  1. 5 1
      README.md

+ 5 - 1
README.md

@@ -4,7 +4,7 @@ This tutorial was designed for easily diving into TensorFlow, through examples.
 
 It is suitable for beginners who want to find clear and concise examples about TensorFlow. Besides the traditional 'raw' TensorFlow implementations, you can also find the latest TensorFlow API practices (such as `layers`, `estimator`, `dataset`, ...).
 
-**Update (12/12/2017):** TensorFlow v1.4 is recommended. Added many new examples (kmeans, random forest, multi-gpu training, layers api, estimator api, dataset api ...).
+**Update (03/18/2018):** TensorFlow's Eager API examples available! (TF v1.5+ recommended).
 
 *If you are using older TensorFlow version (0.11 and under), please have a [look here](https://github.com/aymericdamien/TensorFlow-Examples/tree/0.11).*
 
@@ -17,10 +17,13 @@ It is suitable for beginners who want to find clear and concise examples about T
 #### 1 - Introduction
 - **Hello World** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py)). Very simple example to learn how to print "hello world" using TensorFlow.
 - **Basic Operations** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py)). A simple example that cover TensorFlow basic operations.
+- **TensorFlow Eager API basics** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_eager_api.py)). Get started with TensorFlow's Eager API.
 
 #### 2 - Basic Models
 - **Linear Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py)). Implement a Linear Regression with TensorFlow.
+- **Linear Regression (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression_eager_api.py)). Implement a Linear Regression using TensorFlow's Eager API.
 - **Logistic Regression** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py)). Implement a Logistic Regression with TensorFlow.
+- **Logistic Regression (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression_eager_api.py)). Implement a Logistic Regression using TensorFlow's Eager API.
 - **Nearest Neighbor** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py)). Implement Nearest Neighbor algorithm with TensorFlow.
 - **K-Means** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/kmeans.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/kmeans.py)). Build a K-Means classifier with TensorFlow.
 - **Random Forest** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/random_forest.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/random_forest.py)). Build a Random Forest classifier with TensorFlow.
@@ -30,6 +33,7 @@ It is suitable for beginners who want to find clear and concise examples about T
 
 - **Simple Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_raw.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_raw.py)). Build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset. Raw TensorFlow implementation.
 - **Simple Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
+- **Simple Neural Network (eager api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/neural_network_eager_api.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/neural_network_eager_api.py)). Use TensorFlow Eager API to build a simple neural network (a.k.a Multi-layer Perceptron) to classify MNIST digits dataset.
 - **Convolutional Neural Network** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network_raw.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network_raw.py)). Build a convolutional neural network to classify MNIST digits dataset. Raw TensorFlow implementation.
 - **Convolutional Neural Network (tf.layers/estimator api)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/convolutional_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/convolutional_network.py)). Use TensorFlow 'layers' and 'estimator' API to build a convolutional neural network to classify MNIST digits dataset.
 - **Recurrent Neural Network (LSTM)** ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/recurrent_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py)). Build a recurrent neural network (LSTM) to classify MNIST digits dataset.