|
@@ -0,0 +1,90 @@
|
|
|
|
+# Import MINST data
|
|
|
|
+import input_data
|
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
|
+
|
|
|
|
+import tensorflow as tf
|
|
|
|
+
|
|
|
|
+# Parameters
|
|
|
|
+learning_rate = 0.001
|
|
|
|
+training_epochs = 3
|
|
|
|
+batch_size = 64
|
|
|
|
+display_batch = 200 #set to 0 to turn off
|
|
|
|
+display_step = 1
|
|
|
|
+
|
|
|
|
+#Network Parameters
|
|
|
|
+n_hidden_1 = 256
|
|
|
|
+n_hidden_2 = 256
|
|
|
|
+n_input = 784 #MNIST data input
|
|
|
|
+n_classes = 10 #MNIST total classes
|
|
|
|
+
|
|
|
|
+# Create model
|
|
|
|
+x = tf.placeholder("float", [None, n_input])
|
|
|
|
+y = tf.placeholder("float", [None, n_classes])
|
|
|
|
+
|
|
|
|
+def conv2d(img, w, b):
|
|
|
|
+ return tf.nn.relu(tf.nn.conv2d(img, w, strides=[1, 1, 1, 1], padding='SAME') + b)
|
|
|
|
+
|
|
|
|
+def max_pool(img, k):
|
|
|
|
+ return tf.nn.max_pool(img, ksize=[1, k, k, 1], strides=[1, k, k, 1], padding='SAME')
|
|
|
|
+
|
|
|
|
+def conv_net(_X, _weights, _biases):
|
|
|
|
+ _X = tf.reshape(_X, shape=[-1, 28, 28, 1])
|
|
|
|
+
|
|
|
|
+ conv1 = conv2d(_X, _weights['wc1'], _biases['bc1'])
|
|
|
|
+ conv1 = max_pool(conv1, k=2)
|
|
|
|
+ conv1 = tf.nn.dropout(conv1, 0.75)
|
|
|
|
+
|
|
|
|
+ conv2 = conv2d(conv1, _weights['wc2'], _biases['bc2'])
|
|
|
|
+ conv2 = max_pool(conv2, k=2)
|
|
|
|
+ conv2 = tf.nn.dropout(conv2, 0.75)
|
|
|
|
+
|
|
|
|
+ dense1 = tf.reshape(conv2, [-1, _weights['wd1'].get_shape().as_list()[0]])
|
|
|
|
+ dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'])
|
|
|
|
+ dense1 = tf.nn.dropout(dense1, 0.75)
|
|
|
|
+
|
|
|
|
+ out = tf.matmul(dense1, _weights['out']) + _biases['out']
|
|
|
|
+ return out
|
|
|
|
+
|
|
|
|
+weights = {
|
|
|
|
+ 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),
|
|
|
|
+ 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),
|
|
|
|
+ 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),
|
|
|
|
+ 'out': tf.Variable(tf.random_normal([1024, 10]))
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+biases = {
|
|
|
|
+ 'bc1': tf.Variable(tf.random_normal([32])),
|
|
|
|
+ 'bc2': tf.Variable(tf.random_normal([64])),
|
|
|
|
+ 'bd1': tf.Variable(tf.random_normal([1024])),
|
|
|
|
+ 'out': tf.Variable(tf.random_normal([n_classes]))
|
|
|
|
+}
|
|
|
|
+
|
|
|
|
+pred = conv_net(x, weights, biases)
|
|
|
|
+cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
|
|
|
|
+optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
|
|
|
|
+
|
|
|
|
+# Train
|
|
|
|
+#load mnist data
|
|
|
|
+init = tf.initialize_all_variables()
|
|
|
|
+with tf.Session() as sess:
|
|
|
|
+ sess.run(init)
|
|
|
|
+ #one epoch can take a long time on CPU
|
|
|
|
+ for epoch in range(training_epochs):
|
|
|
|
+ avg_cost = 0.
|
|
|
|
+ total_batch = int(mnist.train.num_examples/batch_size)
|
|
|
|
+ for i in range(total_batch):
|
|
|
|
+ batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
|
+ sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys})
|
|
|
|
+ avg_cost += sess.run(cost, feed_dict={x: batch_xs, y: batch_ys})/total_batch
|
|
|
|
+ if i % display_batch == 0 and display_batch > 0:
|
|
|
|
+ print "Epoch:", '%04d' % (epoch+1), "Batch " + str(i) + "/" + str(total_batch), "cost=", \
|
|
|
|
+ "{:.9f}".format(sess.run(cost, feed_dict={x: batch_xs, y: batch_ys}))
|
|
|
|
+ if epoch % display_step == 0:
|
|
|
|
+ print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
|
|
|
|
+
|
|
|
|
+ print "Optimization Finished!"
|
|
|
|
+
|
|
|
|
+ # Test trained model
|
|
|
|
+ correct_prediction = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
|
|
|
|
+ accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
|
|
|
|
+ print "Accuracy:", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})
|