|
@@ -29,17 +29,17 @@
|
|
|
"name": "stdout",
|
|
|
"output_type": "stream",
|
|
|
"text": [
|
|
|
- "Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
|
|
|
+ "Extracting MNIST_data/train-images-idx3-ubyte.gz\n",
|
|
|
+ "Extracting MNIST_data/train-labels-idx1-ubyte.gz\n",
|
|
|
+ "Extracting MNIST_data/t10k-images-idx3-ubyte.gz\n",
|
|
|
+ "Extracting MNIST_data/t10k-labels-idx1-ubyte.gz\n"
|
|
|
]
|
|
|
}
|
|
|
],
|
|
|
"source": [
|
|
|
"# Import MINST data\n",
|
|
|
"from tensorflow.examples.tutorials.mnist import input_data\n",
|
|
|
- "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)\n",
|
|
|
+ "mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot=True)\n",
|
|
|
"\n",
|
|
|
"import tensorflow as tf"
|
|
|
]
|
|
@@ -92,9 +92,9 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 4,
|
|
|
+ "execution_count": 5,
|
|
|
"metadata": {
|
|
|
- "collapsed": true
|
|
|
+ "collapsed": false
|
|
|
},
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
@@ -114,16 +114,16 @@
|
|
|
"pred = multilayer_perceptron(x, weights, biases)\n",
|
|
|
"\n",
|
|
|
"# Define loss and optimizer\n",
|
|
|
- "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n",
|
|
|
+ "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n",
|
|
|
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n",
|
|
|
"\n",
|
|
|
"# Initializing the variables\n",
|
|
|
- "init = tf.initialize_all_variables()"
|
|
|
+ "init = tf.global_variables_initializer()"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 5,
|
|
|
+ "execution_count": 6,
|
|
|
"metadata": {
|
|
|
"collapsed": false
|
|
|
},
|
|
@@ -132,23 +132,23 @@
|
|
|
"name": "stdout",
|
|
|
"output_type": "stream",
|
|
|
"text": [
|
|
|
- "Epoch: 0001 cost= 185.342230390\n",
|
|
|
- "Epoch: 0002 cost= 44.266946572\n",
|
|
|
- "Epoch: 0003 cost= 27.999560453\n",
|
|
|
- "Epoch: 0004 cost= 19.655567043\n",
|
|
|
- "Epoch: 0005 cost= 14.284429696\n",
|
|
|
- "Epoch: 0006 cost= 10.640310403\n",
|
|
|
- "Epoch: 0007 cost= 7.904047886\n",
|
|
|
- "Epoch: 0008 cost= 5.989115090\n",
|
|
|
- "Epoch: 0009 cost= 4.689374613\n",
|
|
|
- "Epoch: 0010 cost= 3.455884229\n",
|
|
|
- "Epoch: 0011 cost= 2.733002625\n",
|
|
|
- "Epoch: 0012 cost= 2.101091420\n",
|
|
|
- "Epoch: 0013 cost= 1.496508092\n",
|
|
|
- "Epoch: 0014 cost= 1.245452015\n",
|
|
|
- "Epoch: 0015 cost= 0.912072906\n",
|
|
|
+ "Epoch: 0001 cost= 173.056566575\n",
|
|
|
+ "Epoch: 0002 cost= 44.054413928\n",
|
|
|
+ "Epoch: 0003 cost= 27.455470655\n",
|
|
|
+ "Epoch: 0004 cost= 19.008652363\n",
|
|
|
+ "Epoch: 0005 cost= 13.654873594\n",
|
|
|
+ "Epoch: 0006 cost= 10.059267435\n",
|
|
|
+ "Epoch: 0007 cost= 7.436018432\n",
|
|
|
+ "Epoch: 0008 cost= 5.587794416\n",
|
|
|
+ "Epoch: 0009 cost= 4.209882509\n",
|
|
|
+ "Epoch: 0010 cost= 3.203879515\n",
|
|
|
+ "Epoch: 0011 cost= 2.319920681\n",
|
|
|
+ "Epoch: 0012 cost= 1.676204545\n",
|
|
|
+ "Epoch: 0013 cost= 1.248805338\n",
|
|
|
+ "Epoch: 0014 cost= 1.052676844\n",
|
|
|
+ "Epoch: 0015 cost= 0.890117338\n",
|
|
|
"Optimization Finished!\n",
|
|
|
- "Accuracy: 0.9422\n"
|
|
|
+ "Accuracy: 0.9459\n"
|
|
|
]
|
|
|
}
|
|
|
],
|
|
@@ -181,6 +181,15 @@
|
|
|
" accuracy = tf.reduce_mean(tf.cast(correct_prediction, \"float\"))\n",
|
|
|
" print \"Accuracy:\", accuracy.eval({x: mnist.test.images, y: mnist.test.labels})"
|
|
|
]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": true
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
}
|
|
|
],
|
|
|
"metadata": {
|
|
@@ -192,16 +201,16 @@
|
|
|
"language_info": {
|
|
|
"codemirror_mode": {
|
|
|
"name": "ipython",
|
|
|
- "version": 2.0
|
|
|
+ "version": 2
|
|
|
},
|
|
|
"file_extension": ".py",
|
|
|
"mimetype": "text/x-python",
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython2",
|
|
|
- "version": "2.7.11"
|
|
|
+ "version": "2.7.13"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|
|
|
"nbformat_minor": 0
|
|
|
-}
|
|
|
+}
|