|
@@ -0,0 +1,387 @@
|
|
|
|
+{
|
|
|
|
+ "cells": [
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": null,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "collapsed": true
|
|
|
|
+ },
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "'''\n",
|
|
|
|
+ "A Convolutional Network implementation example using TensorFlow library.\n",
|
|
|
|
+ "This example is using the MNIST database of handwritten digits\n",
|
|
|
|
+ "(http://yann.lecun.com/exdb/mnist/)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "Author: Aymeric Damien\n",
|
|
|
|
+ "Project: https://github.com/aymericdamien/TensorFlow-Examples/\n",
|
|
|
|
+ "'''"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 1,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "collapsed": false
|
|
|
|
+ },
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "name": "stdout",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
|
|
|
|
+ "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
|
|
|
|
+ "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
|
|
|
|
+ "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "import tensorflow as tf\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Import MINST data\n",
|
|
|
|
+ "from tensorflow.examples.tutorials.mnist import input_data\n",
|
|
|
|
+ "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 2,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "collapsed": true
|
|
|
|
+ },
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Parameters\n",
|
|
|
|
+ "learning_rate = 0.001\n",
|
|
|
|
+ "training_iters = 200000\n",
|
|
|
|
+ "batch_size = 128\n",
|
|
|
|
+ "display_step = 10\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Network Parameters\n",
|
|
|
|
+ "n_input = 784 # MNIST data input (img shape: 28*28)\n",
|
|
|
|
+ "n_classes = 10 # MNIST total classes (0-9 digits)\n",
|
|
|
|
+ "dropout = 0.75 # Dropout, probability to keep units\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# tf Graph input\n",
|
|
|
|
+ "x = tf.placeholder(tf.float32, [None, n_input])\n",
|
|
|
|
+ "y = tf.placeholder(tf.float32, [None, n_classes])\n",
|
|
|
|
+ "keep_prob = tf.placeholder(tf.float32) #dropout (keep probability)"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 3,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "collapsed": true
|
|
|
|
+ },
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Create some wrappers for simplicity\n",
|
|
|
|
+ "def conv2d(x, W, b, strides=1):\n",
|
|
|
|
+ " # Conv2D wrapper, with bias and relu activation\n",
|
|
|
|
+ " x = tf.nn.conv2d(x, W, strides=[1, strides, strides, 1], padding='SAME')\n",
|
|
|
|
+ " x = tf.nn.bias_add(x, b)\n",
|
|
|
|
+ " return tf.nn.relu(x)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "def maxpool2d(x, k=2):\n",
|
|
|
|
+ " # MaxPool2D wrapper\n",
|
|
|
|
+ " return tf.nn.max_pool(x, ksize=[1, k, k, 1], strides=[1, k, k, 1],\n",
|
|
|
|
+ " padding='SAME')\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Create model\n",
|
|
|
|
+ "def conv_net(x, weights, biases, dropout):\n",
|
|
|
|
+ " # Reshape input picture\n",
|
|
|
|
+ " x = tf.reshape(x, shape=[-1, 28, 28, 1])\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # Convolution Layer\n",
|
|
|
|
+ " conv1 = conv2d(x, weights['wc1'], biases['bc1'])\n",
|
|
|
|
+ " # Max Pooling (down-sampling)\n",
|
|
|
|
+ " conv1 = maxpool2d(conv1, k=2)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # Convolution Layer\n",
|
|
|
|
+ " conv2 = conv2d(conv1, weights['wc2'], biases['bc2'])\n",
|
|
|
|
+ " # Max Pooling (down-sampling)\n",
|
|
|
|
+ " conv2 = maxpool2d(conv2, k=2)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # Fully connected layer\n",
|
|
|
|
+ " # Reshape conv2 output to fit fully connected layer input\n",
|
|
|
|
+ " fc1 = tf.reshape(conv2, [-1, weights['wd1'].get_shape().as_list()[0]])\n",
|
|
|
|
+ " fc1 = tf.add(tf.matmul(fc1, weights['wd1']), biases['bd1'])\n",
|
|
|
|
+ " fc1 = tf.nn.relu(fc1)\n",
|
|
|
|
+ " # Apply Dropout\n",
|
|
|
|
+ " fc1 = tf.nn.dropout(fc1, dropout)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # Output, class prediction\n",
|
|
|
|
+ " out = tf.add(tf.matmul(fc1, weights['out']), biases['out'])\n",
|
|
|
|
+ " return out"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 4,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "collapsed": true
|
|
|
|
+ },
|
|
|
|
+ "outputs": [],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Store layers weight & bias\n",
|
|
|
|
+ "weights = {\n",
|
|
|
|
+ " # 5x5 conv, 1 input, 32 outputs\n",
|
|
|
|
+ " 'wc1': tf.Variable(tf.random_normal([5, 5, 1, 32])),\n",
|
|
|
|
+ " # 5x5 conv, 32 inputs, 64 outputs\n",
|
|
|
|
+ " 'wc2': tf.Variable(tf.random_normal([5, 5, 32, 64])),\n",
|
|
|
|
+ " # fully connected, 7*7*64 inputs, 1024 outputs\n",
|
|
|
|
+ " 'wd1': tf.Variable(tf.random_normal([7*7*64, 1024])),\n",
|
|
|
|
+ " # 1024 inputs, 10 outputs (class prediction)\n",
|
|
|
|
+ " 'out': tf.Variable(tf.random_normal([1024, n_classes]))\n",
|
|
|
|
+ "}\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "biases = {\n",
|
|
|
|
+ " 'bc1': tf.Variable(tf.random_normal([32])),\n",
|
|
|
|
+ " 'bc2': tf.Variable(tf.random_normal([64])),\n",
|
|
|
|
+ " 'bd1': tf.Variable(tf.random_normal([1024])),\n",
|
|
|
|
+ " 'out': tf.Variable(tf.random_normal([n_classes]))\n",
|
|
|
|
+ "}\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Construct model\n",
|
|
|
|
+ "pred = conv_net(x, weights, biases, keep_prob)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Define loss and optimizer\n",
|
|
|
|
+ "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n",
|
|
|
|
+ "optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Evaluate model\n",
|
|
|
|
+ "correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n",
|
|
|
|
+ "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n",
|
|
|
|
+ "\n",
|
|
|
|
+ "# Initializing the variables\n",
|
|
|
|
+ "init = tf.initialize_all_variables()"
|
|
|
|
+ ]
|
|
|
|
+ },
|
|
|
|
+ {
|
|
|
|
+ "cell_type": "code",
|
|
|
|
+ "execution_count": 5,
|
|
|
|
+ "metadata": {
|
|
|
|
+ "collapsed": false
|
|
|
|
+ },
|
|
|
|
+ "outputs": [
|
|
|
|
+ {
|
|
|
|
+ "name": "stdout",
|
|
|
|
+ "output_type": "stream",
|
|
|
|
+ "text": [
|
|
|
|
+ "Iter 1280, Minibatch Loss= 17231.589844, Training Accuracy= 0.25000\n",
|
|
|
|
+ "Iter 2560, Minibatch Loss= 10580.260742, Training Accuracy= 0.54688\n",
|
|
|
|
+ "Iter 3840, Minibatch Loss= 7395.362793, Training Accuracy= 0.64062\n",
|
|
|
|
+ "Iter 5120, Minibatch Loss= 4864.292480, Training Accuracy= 0.75781\n",
|
|
|
|
+ "Iter 6400, Minibatch Loss= 3830.062012, Training Accuracy= 0.80469\n",
|
|
|
|
+ "Iter 7680, Minibatch Loss= 6031.701172, Training Accuracy= 0.72656\n",
|
|
|
|
+ "Iter 8960, Minibatch Loss= 2549.708740, Training Accuracy= 0.81250\n",
|
|
|
|
+ "Iter 10240, Minibatch Loss= 2010.484985, Training Accuracy= 0.84375\n",
|
|
|
|
+ "Iter 11520, Minibatch Loss= 1607.380981, Training Accuracy= 0.89062\n",
|
|
|
|
+ "Iter 12800, Minibatch Loss= 1983.302856, Training Accuracy= 0.82812\n",
|
|
|
|
+ "Iter 14080, Minibatch Loss= 401.215088, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 15360, Minibatch Loss= 976.289307, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 16640, Minibatch Loss= 1844.699951, Training Accuracy= 0.89844\n",
|
|
|
|
+ "Iter 17920, Minibatch Loss= 1009.859863, Training Accuracy= 0.92969\n",
|
|
|
|
+ "Iter 19200, Minibatch Loss= 1397.939453, Training Accuracy= 0.88281\n",
|
|
|
|
+ "Iter 20480, Minibatch Loss= 540.369995, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 21760, Minibatch Loss= 2589.246826, Training Accuracy= 0.87500\n",
|
|
|
|
+ "Iter 23040, Minibatch Loss= 404.981293, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 24320, Minibatch Loss= 742.155396, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 25600, Minibatch Loss= 851.599731, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 26880, Minibatch Loss= 1527.609619, Training Accuracy= 0.90625\n",
|
|
|
|
+ "Iter 28160, Minibatch Loss= 1209.633301, Training Accuracy= 0.91406\n",
|
|
|
|
+ "Iter 29440, Minibatch Loss= 1123.146851, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 30720, Minibatch Loss= 950.860596, Training Accuracy= 0.92188\n",
|
|
|
|
+ "Iter 32000, Minibatch Loss= 1217.373779, Training Accuracy= 0.92188\n",
|
|
|
|
+ "Iter 33280, Minibatch Loss= 859.433105, Training Accuracy= 0.91406\n",
|
|
|
|
+ "Iter 34560, Minibatch Loss= 487.426331, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 35840, Minibatch Loss= 287.507721, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 37120, Minibatch Loss= 786.797485, Training Accuracy= 0.91406\n",
|
|
|
|
+ "Iter 38400, Minibatch Loss= 248.981216, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 39680, Minibatch Loss= 147.081467, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 40960, Minibatch Loss= 1198.459106, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 42240, Minibatch Loss= 717.058716, Training Accuracy= 0.92188\n",
|
|
|
|
+ "Iter 43520, Minibatch Loss= 351.870453, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 44800, Minibatch Loss= 271.505554, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 46080, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
|
|
|
|
+ "Iter 47360, Minibatch Loss= 806.163818, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 48640, Minibatch Loss= 1055.359009, Training Accuracy= 0.91406\n",
|
|
|
|
+ "Iter 49920, Minibatch Loss= 459.845520, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 51200, Minibatch Loss= 133.995087, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 52480, Minibatch Loss= 378.886780, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 53760, Minibatch Loss= 122.112671, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 55040, Minibatch Loss= 357.410950, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 56320, Minibatch Loss= 164.791595, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 57600, Minibatch Loss= 740.711060, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 58880, Minibatch Loss= 755.948364, Training Accuracy= 0.92969\n",
|
|
|
|
+ "Iter 60160, Minibatch Loss= 289.819153, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 61440, Minibatch Loss= 162.940323, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 62720, Minibatch Loss= 616.192200, Training Accuracy= 0.92969\n",
|
|
|
|
+ "Iter 64000, Minibatch Loss= 649.317993, Training Accuracy= 0.92188\n",
|
|
|
|
+ "Iter 65280, Minibatch Loss= 1021.529785, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 66560, Minibatch Loss= 203.839050, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 67840, Minibatch Loss= 469.755249, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 69120, Minibatch Loss= 36.496567, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 70400, Minibatch Loss= 214.677551, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 71680, Minibatch Loss= 115.657990, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 72960, Minibatch Loss= 354.555115, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 74240, Minibatch Loss= 124.091103, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 75520, Minibatch Loss= 614.557251, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 76800, Minibatch Loss= 343.182983, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 78080, Minibatch Loss= 678.875183, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 79360, Minibatch Loss= 313.656494, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 80640, Minibatch Loss= 169.024185, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 81920, Minibatch Loss= 98.455017, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 83200, Minibatch Loss= 359.754517, Training Accuracy= 0.92188\n",
|
|
|
|
+ "Iter 84480, Minibatch Loss= 214.993103, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 85760, Minibatch Loss= 262.921265, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 87040, Minibatch Loss= 558.218445, Training Accuracy= 0.89844\n",
|
|
|
|
+ "Iter 88320, Minibatch Loss= 122.281952, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 89600, Minibatch Loss= 300.606689, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 90880, Minibatch Loss= 261.051025, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 92160, Minibatch Loss= 59.812164, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 93440, Minibatch Loss= 309.307312, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 94720, Minibatch Loss= 626.035706, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 96000, Minibatch Loss= 317.929260, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 97280, Minibatch Loss= 196.908218, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 98560, Minibatch Loss= 843.143250, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 99840, Minibatch Loss= 389.142761, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 101120, Minibatch Loss= 246.468994, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 102400, Minibatch Loss= 110.580948, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 103680, Minibatch Loss= 208.350586, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 104960, Minibatch Loss= 506.229462, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 106240, Minibatch Loss= 49.548233, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 107520, Minibatch Loss= 728.496582, Training Accuracy= 0.92969\n",
|
|
|
|
+ "Iter 108800, Minibatch Loss= 187.256622, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 110080, Minibatch Loss= 273.696899, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 111360, Minibatch Loss= 317.126678, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 112640, Minibatch Loss= 148.293365, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 113920, Minibatch Loss= 139.360168, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 115200, Minibatch Loss= 167.539093, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 116480, Minibatch Loss= 565.433594, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 117760, Minibatch Loss= 8.117203, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 119040, Minibatch Loss= 348.071472, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 120320, Minibatch Loss= 287.732849, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 121600, Minibatch Loss= 156.525284, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 122880, Minibatch Loss= 296.147339, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 124160, Minibatch Loss= 260.941956, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 125440, Minibatch Loss= 241.011719, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 126720, Minibatch Loss= 185.330444, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 128000, Minibatch Loss= 346.407013, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 129280, Minibatch Loss= 522.477173, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 130560, Minibatch Loss= 97.665955, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 131840, Minibatch Loss= 111.370262, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 133120, Minibatch Loss= 106.377136, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 134400, Minibatch Loss= 432.294983, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 135680, Minibatch Loss= 104.584610, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 136960, Minibatch Loss= 439.611053, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 138240, Minibatch Loss= 171.394562, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 139520, Minibatch Loss= 83.505905, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 140800, Minibatch Loss= 240.278427, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 142080, Minibatch Loss= 417.140320, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 143360, Minibatch Loss= 77.656067, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 144640, Minibatch Loss= 284.589844, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 145920, Minibatch Loss= 372.114288, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 147200, Minibatch Loss= 352.900024, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 148480, Minibatch Loss= 148.120621, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 149760, Minibatch Loss= 127.385742, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 151040, Minibatch Loss= 383.167175, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 152320, Minibatch Loss= 331.846649, Training Accuracy= 0.94531\n",
|
|
|
|
+ "Iter 153600, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
|
|
|
|
+ "Iter 154880, Minibatch Loss= 24.065147, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 156160, Minibatch Loss= 43.433868, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 157440, Minibatch Loss= 205.383972, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 158720, Minibatch Loss= 83.019257, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 160000, Minibatch Loss= 195.710556, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 161280, Minibatch Loss= 177.192932, Training Accuracy= 0.95312\n",
|
|
|
|
+ "Iter 162560, Minibatch Loss= 261.618713, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 163840, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
|
|
|
|
+ "Iter 165120, Minibatch Loss= 62.901100, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 166400, Minibatch Loss= 17.181839, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 167680, Minibatch Loss= 102.738960, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 168960, Minibatch Loss= 0.000000, Training Accuracy= 1.00000\n",
|
|
|
|
+ "Iter 170240, Minibatch Loss= 71.784363, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 171520, Minibatch Loss= 260.672852, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 172800, Minibatch Loss= 186.616119, Training Accuracy= 0.96094\n",
|
|
|
|
+ "Iter 174080, Minibatch Loss= 312.432312, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 175360, Minibatch Loss= 45.828953, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 176640, Minibatch Loss= 62.931808, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 177920, Minibatch Loss= 63.452362, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 179200, Minibatch Loss= 53.608818, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 180480, Minibatch Loss= 57.089508, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 181760, Minibatch Loss= 601.268799, Training Accuracy= 0.93750\n",
|
|
|
|
+ "Iter 183040, Minibatch Loss= 59.850044, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 184320, Minibatch Loss= 145.267883, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 185600, Minibatch Loss= 24.205322, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 186880, Minibatch Loss= 51.866646, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 188160, Minibatch Loss= 166.911987, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 189440, Minibatch Loss= 32.308147, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 190720, Minibatch Loss= 514.898071, Training Accuracy= 0.92188\n",
|
|
|
|
+ "Iter 192000, Minibatch Loss= 146.610031, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 193280, Minibatch Loss= 23.939758, Training Accuracy= 0.99219\n",
|
|
|
|
+ "Iter 194560, Minibatch Loss= 224.806641, Training Accuracy= 0.97656\n",
|
|
|
|
+ "Iter 195840, Minibatch Loss= 71.935089, Training Accuracy= 0.98438\n",
|
|
|
|
+ "Iter 197120, Minibatch Loss= 182.021210, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 198400, Minibatch Loss= 125.573784, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Iter 199680, Minibatch Loss= 122.506104, Training Accuracy= 0.96875\n",
|
|
|
|
+ "Optimization Finished!\n",
|
|
|
|
+ "Testing Accuracy: 0.972656\n"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "source": [
|
|
|
|
+ "# Launch the graph\n",
|
|
|
|
+ "with tf.Session() as sess:\n",
|
|
|
|
+ " sess.run(init)\n",
|
|
|
|
+ " step = 1\n",
|
|
|
|
+ " # Keep training until reach max iterations\n",
|
|
|
|
+ " while step * batch_size < training_iters:\n",
|
|
|
|
+ " batch_x, batch_y = mnist.train.next_batch(batch_size)\n",
|
|
|
|
+ " # Run optimization op (backprop)\n",
|
|
|
|
+ " sess.run(optimizer, feed_dict={x: batch_x, y: batch_y,\n",
|
|
|
|
+ " keep_prob: dropout})\n",
|
|
|
|
+ " if step % display_step == 0:\n",
|
|
|
|
+ " # Calculate batch loss and accuracy\n",
|
|
|
|
+ " loss, acc = sess.run([cost, accuracy], feed_dict={x: batch_x,\n",
|
|
|
|
+ " y: batch_y,\n",
|
|
|
|
+ " keep_prob: 1.})\n",
|
|
|
|
+ " print \"Iter \" + str(step*batch_size) + \", Minibatch Loss= \" + \\\n",
|
|
|
|
+ " \"{:.6f}\".format(loss) + \", Training Accuracy= \" + \\\n",
|
|
|
|
+ " \"{:.5f}\".format(acc)\n",
|
|
|
|
+ " step += 1\n",
|
|
|
|
+ " print \"Optimization Finished!\"\n",
|
|
|
|
+ "\n",
|
|
|
|
+ " # Calculate accuracy for 256 mnist test images\n",
|
|
|
|
+ " print \"Testing Accuracy:\", \\\n",
|
|
|
|
+ " sess.run(accuracy, feed_dict={x: mnist.test.images[:256],\n",
|
|
|
|
+ " y: mnist.test.labels[:256],\n",
|
|
|
|
+ " keep_prob: 1.})"
|
|
|
|
+ ]
|
|
|
|
+ }
|
|
|
|
+ ],
|
|
|
|
+ "metadata": {
|
|
|
|
+ "kernelspec": {
|
|
|
|
+ "display_name": "Python 2",
|
|
|
|
+ "language": "python",
|
|
|
|
+ "name": "python2"
|
|
|
|
+ },
|
|
|
|
+ "language_info": {
|
|
|
|
+ "codemirror_mode": {
|
|
|
|
+ "name": "ipython",
|
|
|
|
+ "version": 2.0
|
|
|
|
+ },
|
|
|
|
+ "file_extension": ".py",
|
|
|
|
+ "mimetype": "text/x-python",
|
|
|
|
+ "name": "python",
|
|
|
|
+ "nbconvert_exporter": "python",
|
|
|
|
+ "pygments_lexer": "ipython2",
|
|
|
|
+ "version": "2.7.11"
|
|
|
|
+ }
|
|
|
|
+ },
|
|
|
|
+ "nbformat": 4,
|
|
|
|
+ "nbformat_minor": 0
|
|
|
|
+}
|