|
@@ -152,11 +152,176 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
+ "execution_count": 5,
|
|
|
"metadata": {
|
|
|
"collapsed": false
|
|
|
},
|
|
|
- "outputs": [],
|
|
|
+ "outputs": [
|
|
|
+ {
|
|
|
+ "name": "stdout",
|
|
|
+ "output_type": "stream",
|
|
|
+ "text": [
|
|
|
+ "Iter 1280, Minibatch Loss= 26574.855469, Training Accuracy= 0.25781\n",
|
|
|
+ "Iter 2560, Minibatch Loss= 11454.494141, Training Accuracy= 0.49219\n",
|
|
|
+ "Iter 3840, Minibatch Loss= 10070.515625, Training Accuracy= 0.55469\n",
|
|
|
+ "Iter 5120, Minibatch Loss= 4008.586426, Training Accuracy= 0.78125\n",
|
|
|
+ "Iter 6400, Minibatch Loss= 3148.004639, Training Accuracy= 0.80469\n",
|
|
|
+ "Iter 7680, Minibatch Loss= 6740.440430, Training Accuracy= 0.71875\n",
|
|
|
+ "Iter 8960, Minibatch Loss= 4103.991699, Training Accuracy= 0.80469\n",
|
|
|
+ "Iter 10240, Minibatch Loss= 2631.275391, Training Accuracy= 0.85938\n",
|
|
|
+ "Iter 11520, Minibatch Loss= 1428.798828, Training Accuracy= 0.91406\n",
|
|
|
+ "Iter 12800, Minibatch Loss= 3909.772705, Training Accuracy= 0.78906\n",
|
|
|
+ "Iter 14080, Minibatch Loss= 1423.095947, Training Accuracy= 0.88281\n",
|
|
|
+ "Iter 15360, Minibatch Loss= 1524.569824, Training Accuracy= 0.89062\n",
|
|
|
+ "Iter 16640, Minibatch Loss= 2234.539795, Training Accuracy= 0.86719\n",
|
|
|
+ "Iter 17920, Minibatch Loss= 933.932800, Training Accuracy= 0.90625\n",
|
|
|
+ "Iter 19200, Minibatch Loss= 2039.046021, Training Accuracy= 0.89062\n",
|
|
|
+ "Iter 20480, Minibatch Loss= 674.179932, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 21760, Minibatch Loss= 3778.958984, Training Accuracy= 0.82812\n",
|
|
|
+ "Iter 23040, Minibatch Loss= 1038.217773, Training Accuracy= 0.91406\n",
|
|
|
+ "Iter 24320, Minibatch Loss= 1689.513672, Training Accuracy= 0.89062\n",
|
|
|
+ "Iter 25600, Minibatch Loss= 1800.954956, Training Accuracy= 0.85938\n",
|
|
|
+ "Iter 26880, Minibatch Loss= 1086.292847, Training Accuracy= 0.90625\n",
|
|
|
+ "Iter 28160, Minibatch Loss= 656.042847, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 29440, Minibatch Loss= 1210.589844, Training Accuracy= 0.91406\n",
|
|
|
+ "Iter 30720, Minibatch Loss= 1099.606323, Training Accuracy= 0.90625\n",
|
|
|
+ "Iter 32000, Minibatch Loss= 1073.128174, Training Accuracy= 0.92969\n",
|
|
|
+ "Iter 33280, Minibatch Loss= 518.844543, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 34560, Minibatch Loss= 540.856689, Training Accuracy= 0.92188\n",
|
|
|
+ "Iter 35840, Minibatch Loss= 353.990906, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 37120, Minibatch Loss= 1488.962891, Training Accuracy= 0.91406\n",
|
|
|
+ "Iter 38400, Minibatch Loss= 231.191864, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 39680, Minibatch Loss= 171.154480, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 40960, Minibatch Loss= 2092.023682, Training Accuracy= 0.90625\n",
|
|
|
+ "Iter 42240, Minibatch Loss= 480.594299, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 43520, Minibatch Loss= 504.128143, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 44800, Minibatch Loss= 143.534485, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 46080, Minibatch Loss= 325.875580, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 47360, Minibatch Loss= 602.813049, Training Accuracy= 0.91406\n",
|
|
|
+ "Iter 48640, Minibatch Loss= 794.595093, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 49920, Minibatch Loss= 415.539032, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 51200, Minibatch Loss= 146.016022, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 52480, Minibatch Loss= 294.180786, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 53760, Minibatch Loss= 50.955730, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 55040, Minibatch Loss= 1026.607056, Training Accuracy= 0.92188\n",
|
|
|
+ "Iter 56320, Minibatch Loss= 283.756134, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 57600, Minibatch Loss= 691.538208, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 58880, Minibatch Loss= 491.075073, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 60160, Minibatch Loss= 571.951660, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 61440, Minibatch Loss= 284.041168, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 62720, Minibatch Loss= 1041.941528, Training Accuracy= 0.92969\n",
|
|
|
+ "Iter 64000, Minibatch Loss= 664.833923, Training Accuracy= 0.93750\n",
|
|
|
+ "Iter 65280, Minibatch Loss= 1582.112793, Training Accuracy= 0.88281\n",
|
|
|
+ "Iter 66560, Minibatch Loss= 783.135376, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 67840, Minibatch Loss= 245.942398, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 69120, Minibatch Loss= 752.858948, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 70400, Minibatch Loss= 623.243286, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 71680, Minibatch Loss= 846.498230, Training Accuracy= 0.93750\n",
|
|
|
+ "Iter 72960, Minibatch Loss= 586.516479, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 74240, Minibatch Loss= 92.774963, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 75520, Minibatch Loss= 644.039612, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 76800, Minibatch Loss= 693.247681, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 78080, Minibatch Loss= 466.491882, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 79360, Minibatch Loss= 964.212341, Training Accuracy= 0.93750\n",
|
|
|
+ "Iter 80640, Minibatch Loss= 230.451904, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 81920, Minibatch Loss= 280.434570, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 83200, Minibatch Loss= 213.208252, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 84480, Minibatch Loss= 774.836060, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 85760, Minibatch Loss= 164.687729, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 87040, Minibatch Loss= 419.967407, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 88320, Minibatch Loss= 160.920151, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 89600, Minibatch Loss= 586.063599, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 90880, Minibatch Loss= 345.598145, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 92160, Minibatch Loss= 931.361145, Training Accuracy= 0.92188\n",
|
|
|
+ "Iter 93440, Minibatch Loss= 170.107117, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 94720, Minibatch Loss= 497.162750, Training Accuracy= 0.93750\n",
|
|
|
+ "Iter 96000, Minibatch Loss= 906.600464, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 97280, Minibatch Loss= 303.382202, Training Accuracy= 0.92969\n",
|
|
|
+ "Iter 98560, Minibatch Loss= 509.161652, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 99840, Minibatch Loss= 359.561981, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 101120, Minibatch Loss= 136.516541, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 102400, Minibatch Loss= 517.199341, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 103680, Minibatch Loss= 487.793335, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 104960, Minibatch Loss= 407.351929, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 106240, Minibatch Loss= 70.495193, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 107520, Minibatch Loss= 344.783508, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 108800, Minibatch Loss= 242.682465, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 110080, Minibatch Loss= 169.181458, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 111360, Minibatch Loss= 152.638245, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 112640, Minibatch Loss= 170.795868, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 113920, Minibatch Loss= 133.262726, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 115200, Minibatch Loss= 296.063293, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 116480, Minibatch Loss= 254.247543, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 117760, Minibatch Loss= 506.795715, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 119040, Minibatch Loss= 446.006897, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 120320, Minibatch Loss= 149.467377, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 121600, Minibatch Loss= 52.783600, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 122880, Minibatch Loss= 49.041794, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 124160, Minibatch Loss= 184.371246, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 125440, Minibatch Loss= 129.838501, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 126720, Minibatch Loss= 288.006531, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 128000, Minibatch Loss= 187.284653, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 129280, Minibatch Loss= 197.969955, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 130560, Minibatch Loss= 299.969818, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 131840, Minibatch Loss= 537.602173, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 133120, Minibatch Loss= 4.519302, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 134400, Minibatch Loss= 133.264191, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 135680, Minibatch Loss= 89.662292, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 136960, Minibatch Loss= 107.774078, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 138240, Minibatch Loss= 335.904572, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 139520, Minibatch Loss= 457.494568, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 140800, Minibatch Loss= 259.131531, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 142080, Minibatch Loss= 152.205383, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 143360, Minibatch Loss= 252.535828, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 144640, Minibatch Loss= 109.477585, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 145920, Minibatch Loss= 24.468613, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 147200, Minibatch Loss= 51.722107, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 148480, Minibatch Loss= 69.715233, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 149760, Minibatch Loss= 405.289246, Training Accuracy= 0.92969\n",
|
|
|
+ "Iter 151040, Minibatch Loss= 282.976379, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 152320, Minibatch Loss= 134.991119, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 153600, Minibatch Loss= 491.618103, Training Accuracy= 0.92188\n",
|
|
|
+ "Iter 154880, Minibatch Loss= 154.299988, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 156160, Minibatch Loss= 79.480019, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 157440, Minibatch Loss= 68.093750, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 158720, Minibatch Loss= 459.739685, Training Accuracy= 0.92188\n",
|
|
|
+ "Iter 160000, Minibatch Loss= 168.076843, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 161280, Minibatch Loss= 256.141846, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 162560, Minibatch Loss= 236.400391, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 163840, Minibatch Loss= 177.011261, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 165120, Minibatch Loss= 48.583298, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 166400, Minibatch Loss= 413.800293, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 167680, Minibatch Loss= 209.587387, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 168960, Minibatch Loss= 239.407318, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 170240, Minibatch Loss= 183.567017, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 171520, Minibatch Loss= 87.937515, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 172800, Minibatch Loss= 203.777039, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 174080, Minibatch Loss= 566.378052, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 175360, Minibatch Loss= 325.170898, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 176640, Minibatch Loss= 300.142212, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 177920, Minibatch Loss= 205.370193, Training Accuracy= 0.95312\n",
|
|
|
+ "Iter 179200, Minibatch Loss= 5.594437, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 180480, Minibatch Loss= 110.732109, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 181760, Minibatch Loss= 33.320297, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 183040, Minibatch Loss= 6.885544, Training Accuracy= 0.99219\n",
|
|
|
+ "Iter 184320, Minibatch Loss= 221.144806, Training Accuracy= 0.96875\n",
|
|
|
+ "Iter 185600, Minibatch Loss= 365.337372, Training Accuracy= 0.94531\n",
|
|
|
+ "Iter 186880, Minibatch Loss= 186.558258, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 188160, Minibatch Loss= 149.720322, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 189440, Minibatch Loss= 105.281998, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 190720, Minibatch Loss= 289.980011, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 192000, Minibatch Loss= 214.382278, Training Accuracy= 0.96094\n",
|
|
|
+ "Iter 193280, Minibatch Loss= 461.044312, Training Accuracy= 0.93750\n",
|
|
|
+ "Iter 194560, Minibatch Loss= 138.653076, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 195840, Minibatch Loss= 112.004883, Training Accuracy= 0.98438\n",
|
|
|
+ "Iter 197120, Minibatch Loss= 212.691467, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 198400, Minibatch Loss= 57.642502, Training Accuracy= 0.97656\n",
|
|
|
+ "Iter 199680, Minibatch Loss= 80.503563, Training Accuracy= 0.96875\n",
|
|
|
+ "Optimization Finished!\n",
|
|
|
+ "Testing Accuracy: 0.984375\n"
|
|
|
+ ]
|
|
|
+ }
|
|
|
+ ],
|
|
|
"source": [
|
|
|
"# Launch the graph\n",
|
|
|
"with tf.Session() as sess:\n",
|