@@ -41,7 +41,7 @@ cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initializing the variables
-init = tf.initialize_all_variables()
+init = tf.global_variables_initializer()
# Launch the graph
with tf.Session() as sess:
@@ -38,7 +38,7 @@ cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1))
@@ -33,7 +33,7 @@ pred = tf.arg_min(distance, 0)
accuracy = 0.
@@ -83,7 +83,7 @@ cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
@@ -90,7 +90,7 @@ correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
@@ -104,7 +104,7 @@ correct_pred = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
@@ -162,7 +162,7 @@ correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
@@ -64,7 +64,7 @@ cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
@@ -80,7 +80,7 @@ correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
# 'Saver' op to save and restore all the variables
saver = tf.train.Saver()
@@ -88,7 +88,7 @@ with tf.name_scope('Accuracy'):
acc = tf.reduce_mean(tf.cast(acc, tf.float32))
# Create a summary to monitor cost tensor
tf.scalar_summary("loss", loss)
@@ -49,7 +49,7 @@ with tf.name_scope('Accuracy'):
tf.scalar_summary("loss", cost)
@@ -110,7 +110,7 @@
"outputs": [],
"source": [
"# Initializing the variables\n",
- "init = tf.initialize_all_variables()"
+ "init = tf.global_variables_initializer()"
]
},
{
@@ -73,7 +73,7 @@
"optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n",
"\n",
@@ -169,4 +169,4 @@
"nbformat": 4,
"nbformat_minor": 0
-}
+}
@@ -68,7 +68,7 @@
"accuracy = 0.\n",
@@ -328,4 +328,4 @@
@@ -129,7 +129,7 @@
"optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)\n",
@@ -134,7 +134,7 @@
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n",
@@ -158,7 +158,7 @@
@@ -118,7 +118,7 @@
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n",
@@ -204,4 +204,4 @@
@@ -125,7 +125,7 @@
@@ -101,7 +101,7 @@
@@ -268,4 +268,4 @@
@@ -95,7 +95,7 @@
" acc = tf.reduce_mean(tf.cast(acc, tf.float32))\n",
- "init = tf.initialize_all_variables()\n",
+ "init = tf.global_variables_initializer()\n",
"# Create a summary to monitor cost tensor\n",
"tf.scalar_summary(\"loss\", cost)\n",
@@ -175,4 +175,4 @@