|
@@ -1,3 +1,12 @@
|
|
|
+'''
|
|
|
+AlexNet implementation example using TensorFlow library.
|
|
|
+This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
|
|
|
+AlexNet Paper (http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf)
|
|
|
+
|
|
|
+Author: Aymeric Damien
|
|
|
+Project: https://github.com/aymericdamien/TensorFlow-Examples/
|
|
|
+'''
|
|
|
+
|
|
|
# Import MINST data
|
|
|
import input_data
|
|
|
mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
@@ -10,16 +19,17 @@ training_iters = 200000
|
|
|
batch_size = 64
|
|
|
display_step = 20
|
|
|
|
|
|
-#Network Parameters
|
|
|
-n_input = 784 #MNIST data input
|
|
|
-n_classes = 10 #MNIST total classes
|
|
|
-dropout = 0.8
|
|
|
+# Network Parameters
|
|
|
+n_input = 784 # MNIST data input (img shape: 28*28)
|
|
|
+n_classes = 10 # MNIST total classes (0-9 digits)
|
|
|
+dropout = 0.8 # Dropout, probability to keep units
|
|
|
|
|
|
-# Create model
|
|
|
+# tf Graph input
|
|
|
x = tf.placeholder(tf.types.float32, [None, n_input])
|
|
|
y = tf.placeholder(tf.types.float32, [None, n_classes])
|
|
|
-keep_prob = tf.placeholder(tf.types.float32) #dropout
|
|
|
+keep_prob = tf.placeholder(tf.types.float32) # dropout (keep probability)
|
|
|
|
|
|
+# Create AlexNet model
|
|
|
def conv2d(name, l_input, w, b):
|
|
|
return tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(l_input, w, strides=[1, 1, 1, 1], padding='SAME'),b), name=name)
|
|
|
|
|
@@ -29,32 +39,48 @@ def max_pool(name, l_input, k):
|
|
|
def norm(name, l_input, lsize=4):
|
|
|
return tf.nn.lrn(l_input, lsize, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name=name)
|
|
|
|
|
|
-def conv_net(_X, _weights, _biases, _dropout):
|
|
|
+def alex_net(_X, _weights, _biases, _dropout):
|
|
|
+ # Reshape input picture
|
|
|
_X = tf.reshape(_X, shape=[-1, 28, 28, 1])
|
|
|
|
|
|
+ # Convolution Layer
|
|
|
conv1 = conv2d('conv1', _X, _weights['wc1'], _biases['bc1'])
|
|
|
+ # Max Pooling (down-sampling)
|
|
|
pool1 = max_pool('pool1', conv1, k=2)
|
|
|
+ # Apply Normalization
|
|
|
norm1 = norm('norm1', pool1, lsize=4)
|
|
|
+ # Apply Dropout
|
|
|
norm1 = tf.nn.dropout(norm1, _dropout)
|
|
|
|
|
|
+ # Convolution Layer
|
|
|
conv2 = conv2d('conv2', norm1, _weights['wc2'], _biases['bc2'])
|
|
|
+ # Max Pooling (down-sampling)
|
|
|
pool2 = max_pool('pool2', conv2, k=2)
|
|
|
+ # Apply Normalization
|
|
|
norm2 = norm('norm2', pool2, lsize=4)
|
|
|
+ # Apply Dropout
|
|
|
norm2 = tf.nn.dropout(norm2, _dropout)
|
|
|
|
|
|
+ # Convolution Layer
|
|
|
conv3 = conv2d('conv3', norm2, _weights['wc3'], _biases['bc3'])
|
|
|
+ # Max Pooling (down-sampling)
|
|
|
pool3 = max_pool('pool3', conv3, k=2)
|
|
|
+ # Apply Normalization
|
|
|
norm3 = norm('norm3', pool3, lsize=4)
|
|
|
+ # Apply Dropout
|
|
|
norm3 = tf.nn.dropout(norm3, _dropout)
|
|
|
|
|
|
- dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]])
|
|
|
- dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1')
|
|
|
+ # Fully connected layer
|
|
|
+ dense1 = tf.reshape(norm3, [-1, _weights['wd1'].get_shape().as_list()[0]]) # Reshape conv3 output to fit dense layer input
|
|
|
+ dense1 = tf.nn.relu(tf.matmul(dense1, _weights['wd1']) + _biases['bd1'], name='fc1') # Relu activation
|
|
|
|
|
|
- dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2')
|
|
|
+ dense2 = tf.nn.relu(tf.matmul(dense1, _weights['wd2']) + _biases['bd2'], name='fc2') # Relu activation
|
|
|
|
|
|
+ # Output, class prediction
|
|
|
out = tf.matmul(dense2, _weights['out']) + _biases['out']
|
|
|
return out
|
|
|
|
|
|
+# Store layers weight & bias
|
|
|
weights = {
|
|
|
'wc1': tf.Variable(tf.random_normal([3, 3, 1, 64])),
|
|
|
'wc2': tf.Variable(tf.random_normal([3, 3, 64, 128])),
|
|
@@ -63,7 +89,6 @@ weights = {
|
|
|
'wd2': tf.Variable(tf.random_normal([1024, 1024])),
|
|
|
'out': tf.Variable(tf.random_normal([1024, 10]))
|
|
|
}
|
|
|
-
|
|
|
biases = {
|
|
|
'bc1': tf.Variable(tf.random_normal([64])),
|
|
|
'bc2': tf.Variable(tf.random_normal([128])),
|
|
@@ -73,27 +98,36 @@ biases = {
|
|
|
'out': tf.Variable(tf.random_normal([n_classes]))
|
|
|
}
|
|
|
|
|
|
-pred = conv_net(x, weights, biases, keep_prob)
|
|
|
+# Construct model
|
|
|
+pred = alex_net(x, weights, biases, keep_prob)
|
|
|
+
|
|
|
+# Define loss and optimizer
|
|
|
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
|
|
|
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
|
|
|
|
|
|
-#Evaluate model
|
|
|
+# Evaluate model
|
|
|
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
|
|
|
accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
|
|
|
|
|
|
-# Train
|
|
|
+# Initializing the variables
|
|
|
init = tf.initialize_all_variables()
|
|
|
+
|
|
|
+# Launch the graph
|
|
|
with tf.Session() as sess:
|
|
|
sess.run(init)
|
|
|
step = 1
|
|
|
+ # Keep training until reach max iterations
|
|
|
while step * batch_size < training_iters:
|
|
|
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
+ # Fit training using batch data
|
|
|
sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys, keep_prob: dropout})
|
|
|
if step % display_step == 0:
|
|
|
+ # Calculate batch accuracy
|
|
|
acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
|
|
|
+ # Calculate batch loss
|
|
|
loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys, keep_prob: 1.})
|
|
|
print "Iter " + str(step*batch_size) + ", Loss= " + "{:.6f}".format(loss) + ", Training Accuracy= " + "{:.5f}".format(acc)
|
|
|
step += 1
|
|
|
print "Optimization Finished!"
|
|
|
- #Accuracy on 256 mnist test images
|
|
|
+ # Calculate accuracy for 256 mnist test images
|
|
|
print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: mnist.test.images[:256], y: mnist.test.labels[:256], keep_prob: 1.})
|