|
@@ -1,10 +1,10 @@
|
|
|
{
|
|
|
"cells": [
|
|
|
{
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
- "metadata": {},
|
|
|
- "outputs": [],
|
|
|
+ "cell_type": "markdown",
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": true
|
|
|
+ },
|
|
|
"source": [
|
|
|
"'''\n",
|
|
|
"A Bidirectional Reccurent Neural Network (LSTM) implementation example using TensorFlow library.\n",
|
|
@@ -18,35 +18,26 @@
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 1,
|
|
|
- "metadata": {},
|
|
|
- "outputs": [
|
|
|
- {
|
|
|
- "name": "stdout",
|
|
|
- "output_type": "stream",
|
|
|
- "text": [
|
|
|
- "Extracting /tmp/data/train-images-idx3-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/train-labels-idx1-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/t10k-images-idx3-ubyte.gz\n",
|
|
|
- "Extracting /tmp/data/t10k-labels-idx1-ubyte.gz\n"
|
|
|
- ]
|
|
|
- }
|
|
|
- ],
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": false
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
"source": [
|
|
|
"import tensorflow as tf\n",
|
|
|
- "from tensorflow.models.rnn import rnn, rnn_cell\n",
|
|
|
+ "from tensorflow.contrib import rnn\n",
|
|
|
"import numpy as np\n",
|
|
|
"\n",
|
|
|
"# Import MINST data\n",
|
|
|
"from tensorflow.examples.tutorials.mnist import input_data\n",
|
|
|
- "mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
|
|
|
+ "mnist = input_data.read_data_sets(\"MNIST_data/\", one_hot=True)"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
- "metadata": {},
|
|
|
- "outputs": [],
|
|
|
+ "cell_type": "markdown",
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": true
|
|
|
+ },
|
|
|
"source": [
|
|
|
"'''\n",
|
|
|
"To classify images using a bidirectional reccurent neural network, we consider\n",
|
|
@@ -58,7 +49,9 @@
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": 2,
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": true
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"# Parameters\n",
|
|
@@ -90,7 +83,9 @@
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
"execution_count": 3,
|
|
|
- "metadata": {},
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": false
|
|
|
+ },
|
|
|
"outputs": [],
|
|
|
"source": [
|
|
|
"def BiRNN(x, weights, biases):\n",
|
|
@@ -104,20 +99,20 @@
|
|
|
" # Reshape to (n_steps*batch_size, n_input)\n",
|
|
|
" x = tf.reshape(x, [-1, n_input])\n",
|
|
|
" # Split to get a list of 'n_steps' tensors of shape (batch_size, n_input)\n",
|
|
|
- " x = tf.split(0, n_steps, x)\n",
|
|
|
+ " x = tf.split(x, n_steps, 0)\n",
|
|
|
"\n",
|
|
|
" # Define lstm cells with tensorflow\n",
|
|
|
" # Forward direction cell\n",
|
|
|
- " lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)\n",
|
|
|
+ " lstm_fw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)\n",
|
|
|
" # Backward direction cell\n",
|
|
|
- " lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)\n",
|
|
|
+ " lstm_bw_cell = rnn.BasicLSTMCell(n_hidden, forget_bias=1.0)\n",
|
|
|
"\n",
|
|
|
" # Get lstm cell output\n",
|
|
|
" try:\n",
|
|
|
- " outputs, _, _ = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,\n",
|
|
|
+ " outputs, _, _ = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,\n",
|
|
|
" dtype=tf.float32)\n",
|
|
|
" except Exception: # Old TensorFlow version only returns outputs not states\n",
|
|
|
- " outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,\n",
|
|
|
+ " outputs = rnn.static_bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, x,\n",
|
|
|
" dtype=tf.float32)\n",
|
|
|
"\n",
|
|
|
" # Linear activation, using rnn inner loop last output\n",
|
|
@@ -126,7 +121,7 @@
|
|
|
"pred = BiRNN(x, weights, biases)\n",
|
|
|
"\n",
|
|
|
"# Define loss and optimizer\n",
|
|
|
- "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))\n",
|
|
|
+ "cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=pred, labels=y))\n",
|
|
|
"optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)\n",
|
|
|
"\n",
|
|
|
"# Evaluate model\n",
|
|
@@ -134,101 +129,16 @@
|
|
|
"accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))\n",
|
|
|
"\n",
|
|
|
"# Initializing the variables\n",
|
|
|
- "init = tf.initialize_all_variables()"
|
|
|
+ "init = tf.global_variables_initializer()"
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
"cell_type": "code",
|
|
|
- "execution_count": 4,
|
|
|
- "metadata": {},
|
|
|
- "outputs": [
|
|
|
- {
|
|
|
- "name": "stdout",
|
|
|
- "output_type": "stream",
|
|
|
- "text": [
|
|
|
- "Iter 1280, Minibatch Loss= 1.689740, Training Accuracy= 0.36719\n",
|
|
|
- "Iter 2560, Minibatch Loss= 1.477009, Training Accuracy= 0.44531\n",
|
|
|
- "Iter 3840, Minibatch Loss= 1.245874, Training Accuracy= 0.53125\n",
|
|
|
- "Iter 5120, Minibatch Loss= 0.990923, Training Accuracy= 0.64062\n",
|
|
|
- "Iter 6400, Minibatch Loss= 0.752950, Training Accuracy= 0.71875\n",
|
|
|
- "Iter 7680, Minibatch Loss= 1.023025, Training Accuracy= 0.61719\n",
|
|
|
- "Iter 8960, Minibatch Loss= 0.921414, Training Accuracy= 0.68750\n",
|
|
|
- "Iter 10240, Minibatch Loss= 0.719829, Training Accuracy= 0.75000\n",
|
|
|
- "Iter 11520, Minibatch Loss= 0.468657, Training Accuracy= 0.86719\n",
|
|
|
- "Iter 12800, Minibatch Loss= 0.654315, Training Accuracy= 0.78125\n",
|
|
|
- "Iter 14080, Minibatch Loss= 0.595391, Training Accuracy= 0.83594\n",
|
|
|
- "Iter 15360, Minibatch Loss= 0.392862, Training Accuracy= 0.83594\n",
|
|
|
- "Iter 16640, Minibatch Loss= 0.421122, Training Accuracy= 0.92188\n",
|
|
|
- "Iter 17920, Minibatch Loss= 0.311471, Training Accuracy= 0.88281\n",
|
|
|
- "Iter 19200, Minibatch Loss= 0.276949, Training Accuracy= 0.92188\n",
|
|
|
- "Iter 20480, Minibatch Loss= 0.170499, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 21760, Minibatch Loss= 0.419481, Training Accuracy= 0.86719\n",
|
|
|
- "Iter 23040, Minibatch Loss= 0.183765, Training Accuracy= 0.92188\n",
|
|
|
- "Iter 24320, Minibatch Loss= 0.386232, Training Accuracy= 0.86719\n",
|
|
|
- "Iter 25600, Minibatch Loss= 0.335571, Training Accuracy= 0.88281\n",
|
|
|
- "Iter 26880, Minibatch Loss= 0.169092, Training Accuracy= 0.92969\n",
|
|
|
- "Iter 28160, Minibatch Loss= 0.247623, Training Accuracy= 0.92969\n",
|
|
|
- "Iter 29440, Minibatch Loss= 0.242989, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 30720, Minibatch Loss= 0.253811, Training Accuracy= 0.92188\n",
|
|
|
- "Iter 32000, Minibatch Loss= 0.169660, Training Accuracy= 0.93750\n",
|
|
|
- "Iter 33280, Minibatch Loss= 0.291349, Training Accuracy= 0.90625\n",
|
|
|
- "Iter 34560, Minibatch Loss= 0.172026, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 35840, Minibatch Loss= 0.186019, Training Accuracy= 0.93750\n",
|
|
|
- "Iter 37120, Minibatch Loss= 0.298480, Training Accuracy= 0.89062\n",
|
|
|
- "Iter 38400, Minibatch Loss= 0.158750, Training Accuracy= 0.92188\n",
|
|
|
- "Iter 39680, Minibatch Loss= 0.162706, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 40960, Minibatch Loss= 0.339814, Training Accuracy= 0.86719\n",
|
|
|
- "Iter 42240, Minibatch Loss= 0.068817, Training Accuracy= 0.99219\n",
|
|
|
- "Iter 43520, Minibatch Loss= 0.188742, Training Accuracy= 0.93750\n",
|
|
|
- "Iter 44800, Minibatch Loss= 0.176708, Training Accuracy= 0.92969\n",
|
|
|
- "Iter 46080, Minibatch Loss= 0.096726, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 47360, Minibatch Loss= 0.220973, Training Accuracy= 0.92969\n",
|
|
|
- "Iter 48640, Minibatch Loss= 0.226749, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 49920, Minibatch Loss= 0.188906, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 51200, Minibatch Loss= 0.145194, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 52480, Minibatch Loss= 0.168948, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 53760, Minibatch Loss= 0.069116, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 55040, Minibatch Loss= 0.228721, Training Accuracy= 0.93750\n",
|
|
|
- "Iter 56320, Minibatch Loss= 0.152915, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 57600, Minibatch Loss= 0.126974, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 58880, Minibatch Loss= 0.078870, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 60160, Minibatch Loss= 0.225498, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 61440, Minibatch Loss= 0.111760, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 62720, Minibatch Loss= 0.161434, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 64000, Minibatch Loss= 0.207190, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 65280, Minibatch Loss= 0.103831, Training Accuracy= 0.96094\n",
|
|
|
- "Iter 66560, Minibatch Loss= 0.153846, Training Accuracy= 0.93750\n",
|
|
|
- "Iter 67840, Minibatch Loss= 0.082717, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 69120, Minibatch Loss= 0.199301, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 70400, Minibatch Loss= 0.139725, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 71680, Minibatch Loss= 0.169596, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 72960, Minibatch Loss= 0.142444, Training Accuracy= 0.96094\n",
|
|
|
- "Iter 74240, Minibatch Loss= 0.145822, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 75520, Minibatch Loss= 0.129086, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 76800, Minibatch Loss= 0.078082, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 78080, Minibatch Loss= 0.151803, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 79360, Minibatch Loss= 0.050142, Training Accuracy= 0.98438\n",
|
|
|
- "Iter 80640, Minibatch Loss= 0.136788, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 81920, Minibatch Loss= 0.130100, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 83200, Minibatch Loss= 0.058298, Training Accuracy= 0.98438\n",
|
|
|
- "Iter 84480, Minibatch Loss= 0.120124, Training Accuracy= 0.96094\n",
|
|
|
- "Iter 85760, Minibatch Loss= 0.064916, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 87040, Minibatch Loss= 0.137179, Training Accuracy= 0.93750\n",
|
|
|
- "Iter 88320, Minibatch Loss= 0.138268, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 89600, Minibatch Loss= 0.072827, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 90880, Minibatch Loss= 0.123839, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 92160, Minibatch Loss= 0.087194, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 93440, Minibatch Loss= 0.083489, Training Accuracy= 0.97656\n",
|
|
|
- "Iter 94720, Minibatch Loss= 0.131827, Training Accuracy= 0.95312\n",
|
|
|
- "Iter 96000, Minibatch Loss= 0.098764, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 97280, Minibatch Loss= 0.115553, Training Accuracy= 0.94531\n",
|
|
|
- "Iter 98560, Minibatch Loss= 0.079704, Training Accuracy= 0.96875\n",
|
|
|
- "Iter 99840, Minibatch Loss= 0.064562, Training Accuracy= 0.98438\n",
|
|
|
- "Optimization Finished!\n",
|
|
|
- "Testing Accuracy: 0.992188\n"
|
|
|
- ]
|
|
|
- }
|
|
|
- ],
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": false
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
"source": [
|
|
|
"# Launch the graph\n",
|
|
|
"with tf.Session() as sess:\n",
|
|
@@ -259,6 +169,15 @@
|
|
|
" print \"Testing Accuracy:\", \\\n",
|
|
|
" sess.run(accuracy, feed_dict={x: test_data, y: test_label})"
|
|
|
]
|
|
|
+ },
|
|
|
+ {
|
|
|
+ "cell_type": "code",
|
|
|
+ "execution_count": null,
|
|
|
+ "metadata": {
|
|
|
+ "collapsed": true
|
|
|
+ },
|
|
|
+ "outputs": [],
|
|
|
+ "source": []
|
|
|
}
|
|
|
],
|
|
|
"metadata": {
|
|
@@ -270,14 +189,14 @@
|
|
|
"language_info": {
|
|
|
"codemirror_mode": {
|
|
|
"name": "ipython",
|
|
|
- "version": 2.0
|
|
|
+ "version": 2
|
|
|
},
|
|
|
"file_extension": ".py",
|
|
|
"mimetype": "text/x-python",
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython2",
|
|
|
- "version": "2.7.11"
|
|
|
+ "version": "2.7.13"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|