|
@@ -1,3 +1,4 @@
|
|
|
+from __future__ import print_function
|
|
|
'''
|
|
|
Basic Multi GPU computation example using TensorFlow library.
|
|
|
|
|
@@ -12,7 +13,7 @@ This tutorial requires your machine to have 2 GPUs
|
|
|
"/gpu:1": The second GPU of your machine
|
|
|
'''
|
|
|
|
|
|
-from __future__ import print_function
|
|
|
+
|
|
|
|
|
|
import numpy as np
|
|
|
import tensorflow as tf
|
|
@@ -31,8 +32,8 @@ Results on 8 cores with 2 GTX-980:
|
|
|
* Multi GPU computation time: 0:00:07.131701
|
|
|
'''
|
|
|
# Create random large matrix
|
|
|
-A = np.random.rand(1e4, 1e4).astype('float32')
|
|
|
-B = np.random.rand(1e4, 1e4).astype('float32')
|
|
|
+A = np.random.rand(10000, 10000).astype('float32')
|
|
|
+B = np.random.rand(10000, 10000).astype('float32')
|
|
|
|
|
|
# Create a graph to store results
|
|
|
c1 = []
|
|
@@ -48,8 +49,8 @@ def matpow(M, n):
|
|
|
Single GPU computing
|
|
|
'''
|
|
|
with tf.device('/gpu:0'):
|
|
|
- a = tf.constant(A)
|
|
|
- b = tf.constant(B)
|
|
|
+ a = tf.placeholder(tf.float32, [10000, 10000])
|
|
|
+ b = tf.placeholder(tf.float32, [10000, 10000])
|
|
|
# Compute A^n and B^n and store results in c1
|
|
|
c1.append(matpow(a, n))
|
|
|
c1.append(matpow(b, n))
|
|
@@ -60,7 +61,7 @@ with tf.device('/cpu:0'):
|
|
|
t1_1 = datetime.datetime.now()
|
|
|
with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
|
|
|
# Run the op.
|
|
|
- sess.run(sum)
|
|
|
+ sess.run(sum, {a:A, b:B})
|
|
|
t2_1 = datetime.datetime.now()
|
|
|
|
|
|
|
|
@@ -70,13 +71,13 @@ Multi GPU computing
|
|
|
# GPU:0 computes A^n
|
|
|
with tf.device('/gpu:0'):
|
|
|
# Compute A^n and store result in c2
|
|
|
- a = tf.constant(A)
|
|
|
+ a = tf.placeholder(tf.float32, [10000, 10000])
|
|
|
c2.append(matpow(a, n))
|
|
|
|
|
|
# GPU:1 computes B^n
|
|
|
with tf.device('/gpu:1'):
|
|
|
# Compute B^n and store result in c2
|
|
|
- b = tf.constant(B)
|
|
|
+ b = tf.placeholder(tf.float32, [10000, 10000])
|
|
|
c2.append(matpow(b, n))
|
|
|
|
|
|
with tf.device('/cpu:0'):
|
|
@@ -85,7 +86,7 @@ with tf.device('/cpu:0'):
|
|
|
t1_2 = datetime.datetime.now()
|
|
|
with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
|
|
|
# Run the op.
|
|
|
- sess.run(sum)
|
|
|
+ sess.run(sum, {a:A, b:B})
|
|
|
t2_2 = datetime.datetime.now()
|
|
|
|
|
|
|