|
@@ -38,6 +38,7 @@ pred = tf.add(tf.multiply(X, W), b)
|
|
# Mean squared error
|
|
# Mean squared error
|
|
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
|
|
cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
|
|
# Gradient descent
|
|
# Gradient descent
|
|
|
|
+# Note, minimize() knows to modify W and b because Variable objects are trainable=True by default
|
|
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
|
|
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
|
|
|
|
|
|
# Initializing the variables
|
|
# Initializing the variables
|