|
@@ -18,10 +18,10 @@ import numpy as np
|
|
|
import tensorflow as tf
|
|
|
import datetime
|
|
|
|
|
|
-#Processing Units logs
|
|
|
+# Processing Units logs
|
|
|
log_device_placement = True
|
|
|
|
|
|
-#num of multiplications to perform
|
|
|
+# Num of multiplications to perform
|
|
|
n = 10
|
|
|
|
|
|
'''
|
|
@@ -30,11 +30,11 @@ Results on 8 cores with 2 GTX-980:
|
|
|
* Single GPU computation time: 0:00:11.277449
|
|
|
* Multi GPU computation time: 0:00:07.131701
|
|
|
'''
|
|
|
-#Create random large matrix
|
|
|
+# Create random large matrix
|
|
|
A = np.random.rand(1e4, 1e4).astype('float32')
|
|
|
B = np.random.rand(1e4, 1e4).astype('float32')
|
|
|
|
|
|
-# Creates a graph to store results
|
|
|
+# Create a graph to store results
|
|
|
c1 = []
|
|
|
c2 = []
|
|
|
|
|
@@ -50,7 +50,7 @@ Single GPU computing
|
|
|
with tf.device('/gpu:0'):
|
|
|
a = tf.constant(A)
|
|
|
b = tf.constant(B)
|
|
|
- #compute A^n and B^n and store results in c1
|
|
|
+ # Compute A^n and B^n and store results in c1
|
|
|
c1.append(matpow(a, n))
|
|
|
c1.append(matpow(b, n))
|
|
|
|
|
@@ -59,7 +59,7 @@ with tf.device('/cpu:0'):
|
|
|
|
|
|
t1_1 = datetime.datetime.now()
|
|
|
with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
|
|
|
- # Runs the op.
|
|
|
+ # Run the op.
|
|
|
sess.run(sum)
|
|
|
t2_1 = datetime.datetime.now()
|
|
|
|
|
@@ -67,15 +67,15 @@ t2_1 = datetime.datetime.now()
|
|
|
'''
|
|
|
Multi GPU computing
|
|
|
'''
|
|
|
-#GPU:0 computes A^n
|
|
|
+# GPU:0 computes A^n
|
|
|
with tf.device('/gpu:0'):
|
|
|
- #compute A^n and store result in c2
|
|
|
+ # Compute A^n and store result in c2
|
|
|
a = tf.constant(A)
|
|
|
c2.append(matpow(a, n))
|
|
|
|
|
|
-#GPU:1 computes B^n
|
|
|
+# GPU:1 computes B^n
|
|
|
with tf.device('/gpu:1'):
|
|
|
- #compute B^n and store result in c2
|
|
|
+ # Compute B^n and store result in c2
|
|
|
b = tf.constant(B)
|
|
|
c2.append(matpow(b, n))
|
|
|
|
|
@@ -84,7 +84,7 @@ with tf.device('/cpu:0'):
|
|
|
|
|
|
t1_2 = datetime.datetime.now()
|
|
|
with tf.Session(config=tf.ConfigProto(log_device_placement=log_device_placement)) as sess:
|
|
|
- # Runs the op.
|
|
|
+ # Run the op.
|
|
|
sess.run(sum)
|
|
|
t2_2 = datetime.datetime.now()
|
|
|
|