@@ -107,7 +107,7 @@ optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
# Evaluate model
correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
-accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
+accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
# Initializing the variables
init = tf.initialize_all_variables()
@@ -86,7 +86,7 @@ optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost)
@@ -77,7 +77,7 @@ optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) #
@@ -221,7 +221,7 @@
"source": [
"# Evaluate model\n",
"correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))\n",
- "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))"
+ "accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))"
]
},
{
@@ -204,7 +204,7 @@
@@ -142,7 +142,7 @@
"\n",