|
@@ -76,7 +76,7 @@ The following examples are coming from [TFLearn](https://github.com/tflearn/tfle
|
|
|
- [City Name Generation](https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_cityname.py). Generates new US-cities name, using LSTM network.
|
|
|
- [Shakespeare Scripts Generation](https://github.com/tflearn/tflearn/blob/master/examples/nlp/lstm_generator_shakespeare.py). Generates new Shakespeare scripts, using LSTM network.
|
|
|
- [Seq2seq](https://github.com/tflearn/tflearn/blob/master/examples/nlp/seq2seq_example.py). Pedagogical example of seq2seq reccurent network. See [this repo](https://github.com/ichuang/tflearn_seq2seq) for full instructions.
|
|
|
-- [CNN Seq](https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sequence_classification.py). Apply a 1-D convolutional network to classify sequence of words from IMDB sentiment dataset.
|
|
|
+- [CNN Seq](https://github.com/tflearn/tflearn/blob/master/examples/nlp/cnn_sentence_classification.py). Apply a 1-D convolutional network to classify sequence of words from IMDB sentiment dataset.
|
|
|
|
|
|
### Reinforcement Learning
|
|
|
- [Atari Pacman 1-step Q-Learning](https://github.com/tflearn/tflearn/blob/master/examples/reinforcement_learning/atari_1step_qlearning.py). Teach a machine to play Atari games (Pacman by default) using 1-step Q-learning.
|