Parcourir la source

added lstm example

aymericdamien il y a 9 ans
Parent
commit
cf8fc751f2
1 fichiers modifiés avec 107 ajouts et 1 suppressions
  1. 107 1
      examples/3 - Neural Networks/recurrent_network.py

+ 107 - 1
examples/3 - Neural Networks/recurrent_network.py

@@ -1 +1,107 @@
-under dev..
+'''
+A Reccurent Neural Network (LSTM) implementation example using TensorFlow library.
+This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
+Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
+
+Author: Aymeric Damien
+Project: https://github.com/aymericdamien/TensorFlow-Examples/
+'''
+
+# Import MINST data
+import input_data
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
+
+import tensorflow as tf
+from tensorflow.models.rnn import rnn, rnn_cell
+import numpy as np
+
+# Parameters
+learning_rate = 0.001
+training_iters = 100000
+batch_size = 128
+display_step = 10
+
+# Network Parameters
+n_input = 28 # MNIST data input (img shape: 28*28)
+n_steps = 28 # timesteps
+n_hidden = 128 # hidden layer num of features
+n_classes = 10 # MNIST total classes (0-9 digits)
+
+# tf Graph input
+x = tf.placeholder("float", [None, n_steps, n_input])
+istate = tf.placeholder("float", [None, 2*n_hidden]) #state & cell => 2x n_hidden
+y = tf.placeholder("float", [None, n_classes])
+
+# Define weights
+weights = {
+    'hidden': tf.Variable(tf.random_normal([n_input, n_hidden])), # Hidden layer weights
+    'out': tf.Variable(tf.random_normal([n_hidden, n_classes]))
+}
+biases = {
+    'hidden': tf.Variable(tf.random_normal([n_hidden])),
+    'out': tf.Variable(tf.random_normal([n_classes]))
+}
+
+def RNN(_X, _istate, _weights, _biases):
+
+    # input shape: (batch_size, n_steps, n_input)
+    _X = tf.transpose(_X, [1, 0, 2])  # permute n_steps and batch_size
+    # Reshape to prepare input to hidden activation
+    _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
+    # Linear activation
+    _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
+
+    # Define a lstm cell with tensorflow
+    lstm_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
+    # Split data because rnn cell needs a list of inputs for the RNN inner loop
+    _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
+
+    # Get lstm cell output
+    outputs, states = rnn.rnn(lstm_cell, _X, initial_state=_istate)
+
+    # Linear activation
+    # Get inner loop last output
+    return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
+
+pred = RNN(x, istate, weights, biases)
+
+# Define loss and optimizer
+cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
+optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
+
+# Evaluate model
+correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
+accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.types.float32))
+
+# Initializing the variables
+init = tf.initialize_all_variables()
+
+# Launch the graph
+with tf.Session() as sess:
+    sess.run(init)
+    step = 1
+    # Keep training until reach max iterations
+    while step * batch_size < training_iters:
+        batch_xs, batch_ys = mnist.train.next_batch(batch_size)
+        # Reshape data to get 28 seq of 28 elements
+        batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
+        # Fit training using batch data
+        sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
+                                       istate: np.zeros((batch_size, 2*n_hidden))})
+        if step % display_step == 0:
+            # Calculate batch accuracy
+            acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
+                                                istate: np.zeros((batch_size, 2*n_hidden))})
+            # Calculate batch loss
+            loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
+                                             istate: np.zeros((batch_size, 2*n_hidden))})
+            print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
+                  ", Training Accuracy= " + "{:.5f}".format(acc)
+        step += 1
+    print "Optimization Finished!"
+    # Calculate accuracy for 256 mnist test images
+    test_len = 256
+    test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
+    test_label = mnist.test.labels[:test_len]
+    print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
+                                                             istate: np.zeros((test_len, 2*n_hidden))})