|
@@ -42,8 +42,15 @@ kmeans = KMeans(inputs=X, num_clusters=k, distance_metric='cosine',
|
|
|
use_mini_batch=True)
|
|
|
|
|
|
# Build KMeans graph
|
|
|
-(all_scores, cluster_idx, scores, cluster_centers_initialized, init_op,
|
|
|
-train_op) = kmeans.training_graph()
|
|
|
+training_graph = kmeans.training_graph()
|
|
|
+
|
|
|
+if len(training_graph) > 6: # Tensorflow 1.4+
|
|
|
+ (all_scores, cluster_idx, scores, cluster_centers_initialized,
|
|
|
+ cluster_centers_var, init_op, train_op) = training_graph
|
|
|
+else:
|
|
|
+ (all_scores, cluster_idx, scores, cluster_centers_initialized,
|
|
|
+ init_op, train_op) = training_graph
|
|
|
+
|
|
|
cluster_idx = cluster_idx[0] # fix for cluster_idx being a tuple
|
|
|
avg_distance = tf.reduce_mean(scores)
|
|
|
|