|
@@ -0,0 +1,163 @@
|
|
|
+'''
|
|
|
+A Bidirectional Reccurent Neural Network (LSTM) implementation example using TensorFlow library.
|
|
|
+This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/)
|
|
|
+Long Short Term Memory paper: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
|
|
|
+
|
|
|
+Author: Aymeric Damien
|
|
|
+Project: https://github.com/aymericdamien/TensorFlow-Examples/
|
|
|
+'''
|
|
|
+
|
|
|
+# Import MINST data
|
|
|
+import input_data
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+from tensorflow.python.ops.constant_op import constant
|
|
|
+from tensorflow.models.rnn import rnn, rnn_cell
|
|
|
+import numpy as np
|
|
|
+
|
|
|
+'''
|
|
|
+To classify images using a bidirectional reccurent neural network, we consider every image row as a sequence of pixels.
|
|
|
+Because MNIST image shape is 28*28px, we will then handle 28 sequences of 28 steps for every sample.
|
|
|
+'''
|
|
|
+
|
|
|
+# Parameters
|
|
|
+learning_rate = 0.001
|
|
|
+training_iters = 100000
|
|
|
+batch_size = 128
|
|
|
+display_step = 10
|
|
|
+
|
|
|
+# Network Parameters
|
|
|
+n_input = 28 # MNIST data input (img shape: 28*28)
|
|
|
+n_steps = 28 # timesteps
|
|
|
+n_hidden = 128 # hidden layer num of features
|
|
|
+n_classes = 10 # MNIST total classes (0-9 digits)
|
|
|
+
|
|
|
+# tf Graph input
|
|
|
+x = tf.placeholder("float", [None, n_steps, n_input])
|
|
|
+# Tensorflow LSTM cell requires 2x n_hidden length (state & cell)
|
|
|
+istate_fw = tf.placeholder("float", [None, 2*n_hidden])
|
|
|
+istate_bw = tf.placeholder("float", [None, 2*n_hidden])
|
|
|
+y = tf.placeholder("float", [None, n_classes])
|
|
|
+
|
|
|
+# Define weights
|
|
|
+weights = {
|
|
|
+ # Hidden layer weights => 2*n_hidden because of foward + backward cells
|
|
|
+ 'hidden': tf.Variable(tf.random_normal([n_input, 2*n_hidden])),
|
|
|
+ 'out': tf.Variable(tf.random_normal([2*n_hidden, n_classes]))
|
|
|
+}
|
|
|
+biases = {
|
|
|
+ 'hidden': tf.Variable(tf.random_normal([2*n_hidden])),
|
|
|
+ 'out': tf.Variable(tf.random_normal([n_classes]))
|
|
|
+}
|
|
|
+
|
|
|
+def BiRNN(_X, _istate_fw, _istate_bw, _weights, _biases, _batch_size, _seq_len):
|
|
|
+
|
|
|
+ # BiRNN requires to supply sequence_length as [batch_size, int64]
|
|
|
+ # Note: Tensorflow 0.6.0 requires BiRNN sequence_length parameter to be set
|
|
|
+ # For a better implementation with latest version of tensorflow, check below
|
|
|
+ _seq_len = tf.fill([_batch_size], constant(_seq_len, dtype=tf.int64))
|
|
|
+
|
|
|
+ # input shape: (batch_size, n_steps, n_input)
|
|
|
+ _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
|
|
|
+ # Reshape to prepare input to hidden activation
|
|
|
+ _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
|
|
|
+ # Linear activation
|
|
|
+ _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
|
|
|
+
|
|
|
+ # Define lstm cells with tensorflow
|
|
|
+ # Forward direction cell
|
|
|
+ lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
|
|
|
+ # Backward direction cell
|
|
|
+ lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
|
|
|
+ # Split data because rnn cell needs a list of inputs for the RNN inner loop
|
|
|
+ _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
|
|
|
+
|
|
|
+ # Get lstm cell output
|
|
|
+ outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, _X,
|
|
|
+ initial_state_fw=_istate_fw,
|
|
|
+ initial_state_bw=_istate_bw,
|
|
|
+ sequence_length=_seq_len)
|
|
|
+
|
|
|
+ # Linear activation
|
|
|
+ # Get inner loop last output
|
|
|
+ return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
|
|
|
+
|
|
|
+pred = BiRNN(x, istate_fw, istate_bw, weights, biases, batch_size, n_steps)
|
|
|
+
|
|
|
+
|
|
|
+# NOTE: The following code is working with current master version of tensorflow
|
|
|
+# BiRNN sequence_length parameter isn't required, so we don't define it
|
|
|
+#
|
|
|
+# def BiRNN(_X, _istate_fw, _istate_bw, _weights, _biases):
|
|
|
+#
|
|
|
+# # input shape: (batch_size, n_steps, n_input)
|
|
|
+# _X = tf.transpose(_X, [1, 0, 2]) # permute n_steps and batch_size
|
|
|
+# # Reshape to prepare input to hidden activation
|
|
|
+# _X = tf.reshape(_X, [-1, n_input]) # (n_steps*batch_size, n_input)
|
|
|
+# # Linear activation
|
|
|
+# _X = tf.matmul(_X, _weights['hidden']) + _biases['hidden']
|
|
|
+#
|
|
|
+# # Define lstm cells with tensorflow
|
|
|
+# # Forward direction cell
|
|
|
+# lstm_fw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
|
|
|
+# # Backward direction cell
|
|
|
+# lstm_bw_cell = rnn_cell.BasicLSTMCell(n_hidden, forget_bias=1.0)
|
|
|
+# # Split data because rnn cell needs a list of inputs for the RNN inner loop
|
|
|
+# _X = tf.split(0, n_steps, _X) # n_steps * (batch_size, n_hidden)
|
|
|
+#
|
|
|
+# # Get lstm cell output
|
|
|
+# outputs = rnn.bidirectional_rnn(lstm_fw_cell, lstm_bw_cell, _X,
|
|
|
+# initial_state_fw=_istate_fw,
|
|
|
+# initial_state_bw=_istate_bw)
|
|
|
+#
|
|
|
+# # Linear activation
|
|
|
+# # Get inner loop last output
|
|
|
+# return tf.matmul(outputs[-1], _weights['out']) + _biases['out']
|
|
|
+#
|
|
|
+# pred = BiRNN(x, istate_fw, istate_bw, weights, biases)
|
|
|
+
|
|
|
+# Define loss and optimizer
|
|
|
+cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) # Softmax loss
|
|
|
+optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate).minimize(cost) # Adam Optimizer
|
|
|
+
|
|
|
+# Evaluate model
|
|
|
+correct_pred = tf.equal(tf.argmax(pred,1), tf.argmax(y,1))
|
|
|
+accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
|
|
|
+
|
|
|
+# Initializing the variables
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+
|
|
|
+# Launch the graph
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+ step = 1
|
|
|
+ # Keep training until reach max iterations
|
|
|
+ while step * batch_size < training_iters:
|
|
|
+ batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
+ # Reshape data to get 28 seq of 28 elements
|
|
|
+ batch_xs = batch_xs.reshape((batch_size, n_steps, n_input))
|
|
|
+ # Fit training using batch data
|
|
|
+ sess.run(optimizer, feed_dict={x: batch_xs, y: batch_ys,
|
|
|
+ istate_fw: np.zeros((batch_size, 2*n_hidden)),
|
|
|
+ istate_bw: np.zeros((batch_size, 2*n_hidden))})
|
|
|
+ if step % display_step == 0:
|
|
|
+ # Calculate batch accuracy
|
|
|
+ acc = sess.run(accuracy, feed_dict={x: batch_xs, y: batch_ys,
|
|
|
+ istate_fw: np.zeros((batch_size, 2*n_hidden)),
|
|
|
+ istate_bw: np.zeros((batch_size, 2*n_hidden))})
|
|
|
+ # Calculate batch loss
|
|
|
+ loss = sess.run(cost, feed_dict={x: batch_xs, y: batch_ys,
|
|
|
+ istate_fw: np.zeros((batch_size, 2*n_hidden)),
|
|
|
+ istate_bw: np.zeros((batch_size, 2*n_hidden))})
|
|
|
+ print "Iter " + str(step*batch_size) + ", Minibatch Loss= " + "{:.6f}".format(loss) + \
|
|
|
+ ", Training Accuracy= " + "{:.5f}".format(acc)
|
|
|
+ step += 1
|
|
|
+ print "Optimization Finished!"
|
|
|
+ # Calculate accuracy for 128 mnist test images
|
|
|
+ test_len = 128
|
|
|
+ test_data = mnist.test.images[:test_len].reshape((-1, n_steps, n_input))
|
|
|
+ test_label = mnist.test.labels[:test_len]
|
|
|
+ print "Testing Accuracy:", sess.run(accuracy, feed_dict={x: test_data, y: test_label,
|
|
|
+ istate_fw: np.zeros((test_len, 2*n_hidden)),
|
|
|
+ istate_bw: np.zeros((test_len, 2*n_hidden))})
|