|
@@ -0,0 +1,134 @@
|
|
|
+# -*- coding: utf-8 -*-
|
|
|
+
|
|
|
+""" Auto Encoder Example.
|
|
|
+Using an auto encoder on MNIST handwritten digits.
|
|
|
+References:
|
|
|
+ Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based
|
|
|
+ learning applied to document recognition." Proceedings of the IEEE,
|
|
|
+ 86(11):2278-2324, November 1998.
|
|
|
+Links:
|
|
|
+ [MNIST Dataset] http://yann.lecun.com/exdb/mnist/
|
|
|
+"""
|
|
|
+from __future__ import division, print_function, absolute_import
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+import numpy as np
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+
|
|
|
+# Import MINST data
|
|
|
+import input_data
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
+
|
|
|
+# Parameters
|
|
|
+learning_rate = 0.01
|
|
|
+training_epochs = 20
|
|
|
+batch_size = 256
|
|
|
+display_step = 1
|
|
|
+examples_to_show = 10
|
|
|
+
|
|
|
+# Network Parameters
|
|
|
+n_hidden_1 = 256 # 1st layer num features
|
|
|
+n_hidden_2 = 128 # 2nd layer num features
|
|
|
+n_input = 784 # MNIST data input (img shape: 28*28)
|
|
|
+
|
|
|
+# tf Graph input (only pictures)
|
|
|
+X = tf.placeholder("float", [None, n_input])
|
|
|
+
|
|
|
+weights = {
|
|
|
+ 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])),
|
|
|
+ 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])),
|
|
|
+ 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])),
|
|
|
+ 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
|
|
|
+}
|
|
|
+biases = {
|
|
|
+ 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
|
|
|
+ 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
|
|
|
+ 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
|
|
|
+ 'decoder_b2': tf.Variable(tf.random_normal([n_input])),
|
|
|
+}
|
|
|
+
|
|
|
+# Building the encoder
|
|
|
+def encoder(x):
|
|
|
+ # Encoder Hidden layer with relu activation #1
|
|
|
+ layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1']))
|
|
|
+ # Decoder Hidden layer with relu activation #2
|
|
|
+ layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2']))
|
|
|
+ return layer_2
|
|
|
+
|
|
|
+# Building the decoder
|
|
|
+def decoder(x):
|
|
|
+ # Encoder Hidden layer with relu activation #1
|
|
|
+ layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1']))
|
|
|
+ # Decoder Hidden layer with relu activation #2
|
|
|
+ layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2']))
|
|
|
+ return layer_2
|
|
|
+
|
|
|
+# Construct model
|
|
|
+encoder_op = encoder(X)
|
|
|
+decoder_op = decoder(encoder_op)
|
|
|
+
|
|
|
+y_pred = decoder_op
|
|
|
+y_true = X
|
|
|
+# Define loss and optimizer, minimize the squared error
|
|
|
+cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
|
|
|
+optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost)
|
|
|
+
|
|
|
+# Initializing the variables
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+
|
|
|
+# Launch the graph
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+ total_batch = int(mnist.train.num_examples/batch_size)
|
|
|
+ # Training cycle
|
|
|
+ for epoch in range(training_epochs):
|
|
|
+ # Loop over all batches
|
|
|
+ for i in range(total_batch):
|
|
|
+ batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
+ # Fit training using batch data
|
|
|
+ _, cost_value = sess.run([optimizer, cost], feed_dict={X: batch_xs})
|
|
|
+ # Display logs per epoch step
|
|
|
+ if epoch % display_step == 0:
|
|
|
+ print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost_value))
|
|
|
+
|
|
|
+ print("Optimization Finished!")
|
|
|
+
|
|
|
+ #Applying encode and decode over test set
|
|
|
+ encode_decode = sess.run(y_pred, feed_dict={X: mnist.test.images[:examples_to_show]})
|
|
|
+ # Compare original images with their reconstructions
|
|
|
+ f, a = plt.subplots(2, 10, figsize=(10, 2))
|
|
|
+ for i in range(examples_to_show):
|
|
|
+ a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28)))
|
|
|
+ a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
|
|
|
+ f.show()
|
|
|
+ plt.draw()
|
|
|
+ plt.waitforbuttonpress()
|
|
|
+
|
|
|
+# # Regression, with mean square error
|
|
|
+# net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001,
|
|
|
+# loss='mean_square', metric=None)
|
|
|
+#
|
|
|
+# # Training the auto encoder
|
|
|
+# model = tflearn.DNN(net, tensorboard_verbose=0)
|
|
|
+# model.fit(X, X, n_epoch=10, validation_set=(testX, testX),
|
|
|
+# run_id="auto_encoder", batch_size=256)
|
|
|
+#
|
|
|
+# # Encoding X[0] for test
|
|
|
+# print("\nTest encoding of X[0]:")
|
|
|
+# # New model, re-using the same session, for weights sharing
|
|
|
+# encoding_model = tflearn.DNN(encoder, session=model.session)
|
|
|
+# print(encoding_model.predict([X[0]]))
|
|
|
+#
|
|
|
+# # Testing the image reconstruction on new data (test set)
|
|
|
+# print("\nVisualizing results after being encoded and decoded:")
|
|
|
+# testX = tflearn.data_utils.shuffle(testX)[0]
|
|
|
+# # Applying encode and decode over test set
|
|
|
+# encode_decode = model.predict(testX)
|
|
|
+# # Compare original images with their reconstructions
|
|
|
+# f, a = plt.subplots(2, 10, figsize=(10, 2))
|
|
|
+# for i in range(10):
|
|
|
+# a[0][i].imshow(np.reshape(testX[i], (28, 28)))
|
|
|
+# a[1][i].imshow(np.reshape(encode_decode[i], (28, 28)))
|
|
|
+# f.show()
|
|
|
+# plt.draw()
|
|
|
+# plt.waitforbuttonpress()
|