|
@@ -1 +1,139 @@
|
|
|
-# TODO
|
|
|
+'''
|
|
|
+Graph and Loss visualization using Tensorboard.
|
|
|
+This example is using the MNIST database of handwritten digits
|
|
|
+(http://yann.lecun.com/exdb/mnist/)
|
|
|
+
|
|
|
+Author: Aymeric Damien
|
|
|
+Project: https://github.com/aymericdamien/TensorFlow-Examples/
|
|
|
+'''
|
|
|
+
|
|
|
+import tensorflow as tf
|
|
|
+
|
|
|
+# Import MINST data
|
|
|
+from tensorflow.examples.tutorials.mnist import input_data
|
|
|
+mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
|
|
|
+
|
|
|
+# Parameters
|
|
|
+learning_rate = 0.01
|
|
|
+training_epochs = 25
|
|
|
+batch_size = 100
|
|
|
+display_step = 1
|
|
|
+logs_path = '/tmp/tensorflow_logs/example'
|
|
|
+
|
|
|
+# Network Parameters
|
|
|
+n_hidden_1 = 256 # 1st layer number of features
|
|
|
+n_hidden_2 = 256 # 2nd layer number of features
|
|
|
+n_input = 784 # MNIST data input (img shape: 28*28)
|
|
|
+n_classes = 10 # MNIST total classes (0-9 digits)
|
|
|
+
|
|
|
+# tf Graph Input
|
|
|
+# mnist data image of shape 28*28=784
|
|
|
+x = tf.placeholder(tf.float32, [None, 784], name='InputData')
|
|
|
+# 0-9 digits recognition => 10 classes
|
|
|
+y = tf.placeholder(tf.float32, [None, 10], name='LabelData')
|
|
|
+
|
|
|
+
|
|
|
+# Create model
|
|
|
+def multilayer_perceptron(x, weights, biases):
|
|
|
+ # Hidden layer with RELU activation
|
|
|
+ layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1'])
|
|
|
+ layer_1 = tf.nn.relu(layer_1)
|
|
|
+ # Create a summary to visualize the first layer ReLU activation
|
|
|
+ tf.histogram_summary("relu1", layer_1)
|
|
|
+ # Hidden layer with RELU activation
|
|
|
+ layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2'])
|
|
|
+ layer_2 = tf.nn.relu(layer_2)
|
|
|
+ # Create another summary to visualize the second layer ReLU activation
|
|
|
+ tf.histogram_summary("relu2", layer_2)
|
|
|
+ # Output layer
|
|
|
+ out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3'])
|
|
|
+ return out_layer
|
|
|
+
|
|
|
+# Store layers weight & bias
|
|
|
+weights = {
|
|
|
+ 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='W1'),
|
|
|
+ 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='W2'),
|
|
|
+ 'w3': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name='W3')
|
|
|
+}
|
|
|
+biases = {
|
|
|
+ 'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1'),
|
|
|
+ 'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2'),
|
|
|
+ 'b3': tf.Variable(tf.random_normal([n_classes]), name='b3')
|
|
|
+}
|
|
|
+
|
|
|
+# Encapsulating all ops into scopes, making Tensorboard's Graph
|
|
|
+# visualization more convenient
|
|
|
+with tf.name_scope('Model'):
|
|
|
+ # Build model
|
|
|
+ pred = multilayer_perceptron(x, weights, biases)
|
|
|
+
|
|
|
+with tf.name_scope('Loss'):
|
|
|
+ # Softmax Cross entropy (cost function)
|
|
|
+ loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y))
|
|
|
+
|
|
|
+with tf.name_scope('SGD'):
|
|
|
+ # Gradient Descent
|
|
|
+ optimizer = tf.train.GradientDescentOptimizer(learning_rate)
|
|
|
+ # Op to calculate every variable gradient
|
|
|
+ grads = tf.gradients(loss, tf.trainable_variables())
|
|
|
+ grads = list(zip(grads, tf.trainable_variables()))
|
|
|
+ # Op to update all variables according to their gradient
|
|
|
+ apply_grads = optimizer.apply_gradients(grads_and_vars=grads)
|
|
|
+
|
|
|
+with tf.name_scope('Accuracy'):
|
|
|
+ # Accuracy
|
|
|
+ acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))
|
|
|
+ acc = tf.reduce_mean(tf.cast(acc, tf.float32))
|
|
|
+
|
|
|
+# Initializing the variables
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+
|
|
|
+# Create a summary to monitor cost tensor
|
|
|
+tf.scalar_summary("loss", loss)
|
|
|
+# Create a summary to monitor accuracy tensor
|
|
|
+tf.scalar_summary("accuracy", acc)
|
|
|
+# Create summaries to visualize weights
|
|
|
+for var in tf.trainable_variables():
|
|
|
+ tf.histogram_summary(var.name, var)
|
|
|
+# Summarize all gradients
|
|
|
+for grad, var in grads:
|
|
|
+ tf.histogram_summary(var.name + '/gradient', grad)
|
|
|
+# Merge all summaries into a single op
|
|
|
+merged_summary_op = tf.merge_all_summaries()
|
|
|
+
|
|
|
+# Launch the graph
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+
|
|
|
+ # op to write logs to Tensorboard
|
|
|
+ summary_writer = tf.train.SummaryWriter(logs_path,
|
|
|
+ graph=tf.get_default_graph())
|
|
|
+
|
|
|
+ # Training cycle
|
|
|
+ for epoch in range(training_epochs):
|
|
|
+ avg_cost = 0.
|
|
|
+ total_batch = int(mnist.train.num_examples/batch_size)
|
|
|
+ # Loop over all batches
|
|
|
+ for i in range(total_batch):
|
|
|
+ batch_xs, batch_ys = mnist.train.next_batch(batch_size)
|
|
|
+ # Run optimization op (backprop), cost op (to get loss value)
|
|
|
+ # and summary nodes
|
|
|
+ _, c, summary = sess.run([apply_grads, loss, merged_summary_op],
|
|
|
+ feed_dict={x: batch_xs, y: batch_ys})
|
|
|
+ # Write logs at every iteration
|
|
|
+ summary_writer.add_summary(summary, epoch * total_batch + i)
|
|
|
+ # Compute average loss
|
|
|
+ avg_cost += c / total_batch
|
|
|
+ # Display logs per epoch step
|
|
|
+ if (epoch+1) % display_step == 0:
|
|
|
+ print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)
|
|
|
+
|
|
|
+ print "Optimization Finished!"
|
|
|
+
|
|
|
+ # Test model
|
|
|
+ # Calculate accuracy
|
|
|
+ print "Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels})
|
|
|
+
|
|
|
+ print "Run the command line:\n" \
|
|
|
+ "--> tensorboard --logdir=/tmp/tensorflow_logs " \
|
|
|
+ "\nThen open http://0.0.0.0:6006/ into your web browser"
|