|
@@ -1,10 +1,8 @@
|
|
|
{
|
|
|
"cells": [
|
|
|
{
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
+ "cell_type": "markdown",
|
|
|
"metadata": {},
|
|
|
- "outputs": [],
|
|
|
"source": [
|
|
|
"\n",
|
|
|
"# MNIST Dataset Introduction\n",
|
|
@@ -27,12 +25,10 @@
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
+ "cell_type": "markdown",
|
|
|
"metadata": {
|
|
|
"collapsed": true
|
|
|
},
|
|
|
- "outputs": [],
|
|
|
"source": [
|
|
|
"# Import MNIST\n",
|
|
|
"from tensorflow.examples.tutorials.mnist import input_data\n",
|
|
@@ -53,12 +49,10 @@
|
|
|
]
|
|
|
},
|
|
|
{
|
|
|
- "cell_type": "code",
|
|
|
- "execution_count": null,
|
|
|
+ "cell_type": "markdown",
|
|
|
"metadata": {
|
|
|
"collapsed": true
|
|
|
},
|
|
|
- "outputs": [],
|
|
|
"source": [
|
|
|
"# Get the next 64 images array and labels\n",
|
|
|
"batch_X, batch_Y = mnist.train.next_batch(64)"
|
|
@@ -88,9 +82,9 @@
|
|
|
"name": "python",
|
|
|
"nbconvert_exporter": "python",
|
|
|
"pygments_lexer": "ipython2",
|
|
|
- "version": "2.7.13"
|
|
|
+ "version": "2.7.18"
|
|
|
}
|
|
|
},
|
|
|
"nbformat": 4,
|
|
|
- "nbformat_minor": 0
|
|
|
+ "nbformat_minor": 1
|
|
|
}
|