Explorar o código

remove unecessary files

aymericdamien %!s(int64=7) %!d(string=hai) anos
pai
achega
e976a3f947

+ 0 - 0
examples/4_Utils/tensorboard_embedding.py


+ 0 - 187
examples/6_MultiGPU/multigpu_cnn2.py

@@ -1,187 +0,0 @@
-''' Multi-GPU Training Example.
-
-Train a convolutional neural network on multiple GPU with TensorFlow.
-
-Note: Unlike previous examples, we are using TensorFlow Slim API instead of 
-TensorFlow layers API, mainly because it is easier to set variables on CPU 
-using Slim. But TF and Slim layers are very similar.
-
-This example is using the MNIST database of handwritten digits
-(http://yann.lecun.com/exdb/mnist/)
-
-Author: Aymeric Damien
-Project: https://github.com/aymericdamien/TensorFlow-Examples/
-'''
-
-from __future__ import division, print_function, absolute_import
-
-import numpy as np
-import tensorflow as tf
-import tensorflow.contrib.slim as slim
-import time
-
-# Import MNIST data
-from tensorflow.examples.tutorials.mnist import input_data
-mnist = input_data.read_data_sets("/tmp/data/", one_hot=True)
-
-# Training Parameters
-num_gpus = 1
-num_steps = 200
-learning_rate = 0.001
-batch_size = 1024
-display_step = 10
-
-# Network Parameters
-num_input = 784 # MNIST data input (img shape: 28*28)
-num_classes = 10 # MNIST total classes (0-9 digits)
-dropout = 1. # Dropout, probability to keep units
-
-
-# Build a convolutional neural network
-def conv_net(x, n_classes, dropout, reuse, is_training):
-    # Define a scope for reusing the variables
-    with tf.variable_scope('ConvNet', reuse=reuse):
-        # MNIST data input is a 1-D vector of 784 features (28*28 pixels)
-        # Reshape to match picture format [Height x Width x Channel]
-        # Tensor input become 4-D: [Batch Size, Height, Width, Channel]
-        x = tf.reshape(x, shape=[-1, 28, 28, 1])
-
-        # Convolution Layer with 64 filters and a kernel size of 5
-        x = slim.conv2d(x, 64, 5, activation_fn=tf.nn.relu)
-        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
-        x = slim.max_pool2d(x, 2, 2)
-
-        # Convolution Layer with 256 filters and a kernel size of 5
-        x = slim.conv2d(x, 256, 3, activation_fn=tf.nn.relu)
-        # Convolution Layer with 512 filters and a kernel size of 5
-        x = slim.conv2d(x, 512, 3, activation_fn=tf.nn.relu)
-        # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
-        x = slim.max_pool2d(x, 2, 2)
-
-        # Flatten the data to a 1-D vector for the fully connected layer
-        x = slim.flatten(x)
-
-        # Fully connected layer (in contrib folder for now)
-        x = slim.fully_connected(x, 2048, activation_fn=tf.nn.relu)
-        # Apply Dropout (if is_training is False, dropout is not applied)
-        x = slim.dropout(x, keep_prob=dropout, is_training=is_training)
-
-        # Fully connected layer (in contrib folder for now)
-        x = slim.fully_connected(x, 1024, activation_fn=tf.nn.relu)
-        # Apply Dropout (if is_training is False, dropout is not applied)
-        x = slim.dropout(x, keep_prob=dropout, is_training=is_training)
-
-        # Output layer, class prediction, linear activation
-        out = slim.fully_connected(x, n_classes, activation_fn=lambda x: x)
-        # Because 'softmax_cross_entropy_with_logits' loss already apply
-        # softmax, we only apply softmax to testing network
-        out = tf.nn.softmax(out) if not is_training else out
-
-    return out
-
-
-def average_gradients(tower_grads):
-    average_grads = []
-    for grad_and_vars in zip(*tower_grads):
-        # Note that each grad_and_vars looks like the following:
-        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
-        grads = []
-        for g, _ in grad_and_vars:
-            # Add 0 dimension to the gradients to represent the tower.
-            expanded_g = tf.expand_dims(g, 0)
-
-            # Append on a 'tower' dimension which we will average over below.
-            grads.append(expanded_g)
-
-        # Average over the 'tower' dimension.
-        grad = tf.concat(grads, 0)
-        grad = tf.reduce_mean(grad, 0)
-
-        # Keep in mind that the Variables are redundant because they are shared
-        # across towers. So .. we will just return the first tower's pointer to
-        # the Variable.
-        v = grad_and_vars[0][1]
-        grad_and_var = (grad, v)
-        average_grads.append(grad_and_var)
-    return average_grads
-
-
-# Place all ops on CPU by default
-with tf.device('/cpu:0'):
-    tower_grads = []
-    reuse_vars = False
-
-    # tf Graph input
-    X = tf.placeholder(tf.float32, [None, num_input])
-    Y = tf.placeholder(tf.float32, [None, num_classes])
-
-    # Loop over all GPUs and construct their own computation graph
-    for i in range(num_gpus):
-        with tf.device('/gpu:%d' % i):
-
-            # Split data between GPUs
-            _x = X[i * batch_size: (i+1) * batch_size]
-            _y = Y[i * batch_size: (i+1) * batch_size]
-
-            # Because Dropout have different behavior at training and prediction time, we
-            # need to create 2 distinct computation graphs that share the same weights.
-
-            # We need to set all layer variables on cpu0
-            # (otherwise it would assign them to gpu0 by default)
-            with slim.arg_scope([slim.model_variable, slim.variable], device='/cpu:0'):
-                # Create a graph for training
-                logits_train = conv_net(_x, num_classes, dropout,
-                                        reuse=reuse_vars, is_training=True)
-                # Create another graph for testing that reuse the same weights
-                logits_test = conv_net(_x, num_classes, dropout,
-                                       reuse=True, is_training=False)
-
-            # Define loss and optimizer (with train logits, for dropout to take effect)
-            loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(
-                logits=logits_train, labels=_y))
-            optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
-            grads = optimizer.compute_gradients(loss_op)
-
-            # Only first GPU compute accuracy
-            if i == 0:
-                # Evaluate model (with test logits, for dropout to be disabled)
-                correct_pred = tf.equal(tf.argmax(logits_test, 1), tf.argmax(_y, 1))
-                accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32))
-
-            reuse_vars = True
-            tower_grads.append(grads)
-
-    tower_grads = average_gradients(tower_grads)
-    train_op = optimizer.apply_gradients(tower_grads)
-
-    # Initialize the variables (i.e. assign their default value)
-    init = tf.global_variables_initializer()
-
-    # Start Training
-    with tf.Session() as sess:
-
-        # Run the initializer
-        sess.run(init)
-
-        # Keep training until reach max iterations
-        for step in range(1, num_steps + 1):
-            # Get a batch for each GPU
-            batch_x, batch_y = mnist.train.next_batch(batch_size * num_gpus)
-            # Run optimization op (backprop)
-            ts = time.time()
-            sess.run(train_op, feed_dict={X: batch_x, Y: batch_y})
-            te = time.time() - ts
-            if step % display_step == 0 or step == 1:
-                # Calculate batch loss and accuracy
-                loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x,
-                                                                     Y: batch_y})
-                print("Step " + str(step) + ": Minibatch Loss= " + \
-                      "{:.4f}".format(loss) + ", Training Accuracy= " + \
-                      "{:.3f}".format(acc) + ", %i Examples/sec" % int(len(batch_x)/te))
-            step += 1
-        print("Optimization Finished!")
-
-        # Calculate accuracy for MNIST test images
-        print("Testing Accuracy:", \
-            np.mean([sess.run(accuracy, feed_dict={X: mnist.test.images[i:i+batch_size],
-            Y: mnist.test.labels[i:i+batch_size]}) for i in range(0, len(mnist.test.images), batch_size)]))