|
@@ -0,0 +1,47 @@
|
|
|
+import tensorflow as tf
|
|
|
+import numpy
|
|
|
+import matplotlib.pyplot as plt
|
|
|
+rng = numpy.random
|
|
|
+
|
|
|
+# Parameters
|
|
|
+learning_rate = 0.01
|
|
|
+training_epochs = 2000
|
|
|
+display_step = 50
|
|
|
+
|
|
|
+# Training Data
|
|
|
+train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167,7.042,10.791,5.313,7.997,5.654,9.27,3.1])
|
|
|
+train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221,2.827,3.465,1.65,2.904,2.42,2.94,1.3])
|
|
|
+
|
|
|
+# Create Model
|
|
|
+W = tf.Variable(rng.randn(), name="weight")
|
|
|
+b = tf.Variable(rng.randn(), name="bias")
|
|
|
+
|
|
|
+X = tf.placeholder("float")
|
|
|
+Y = tf.placeholder("float")
|
|
|
+n_samples = train_X.shape[0]
|
|
|
+
|
|
|
+activation = tf.add(tf.mul(X, W), b) #linear
|
|
|
+cost = tf.reduce_sum(tf.pow(activation-Y, 2))/(2*n_samples) #L2
|
|
|
+
|
|
|
+optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
|
|
|
+
|
|
|
+init = tf.initialize_all_variables()
|
|
|
+
|
|
|
+with tf.Session() as sess:
|
|
|
+ sess.run(init)
|
|
|
+
|
|
|
+ for epoch in range(training_epochs):
|
|
|
+ for (x, y) in zip(train_X, train_Y):
|
|
|
+ sess.run(optimizer, feed_dict={X: x, Y: y})
|
|
|
+
|
|
|
+ if epoch % display_step == 0:
|
|
|
+ print "Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(sess.run(cost, feed_dict={X: train_X, Y:train_Y})), \
|
|
|
+ "W=", sess.run(W), "b=", sess.run(b)
|
|
|
+
|
|
|
+ print "Optimization Finished!"
|
|
|
+ print "cost=", sess.run(cost, feed_dict={X: train_X, Y: train_Y}), "W=", sess.run(W), "b=", sess.run(b)
|
|
|
+
|
|
|
+ plt.plot(train_X, train_Y, 'ro', label='Original data')
|
|
|
+ plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line')
|
|
|
+ plt.legend()
|
|
|
+ plt.show()
|