|
@@ -7,7 +7,7 @@ Code examples for some popular machine learning algorithms, using TensorFlow lib
|
|
|
- Hello World ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/helloworld.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/helloworld.py))
|
|
|
- Basic Operations ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/1_Introduction/basic_operations.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/1_Introduction/basic_operations.py))
|
|
|
|
|
|
-#### 2 - Basic Classifiers
|
|
|
+#### 2 - Basic Models
|
|
|
- Nearest Neighbor ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/nearest_neighbor.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/nearest_neighbor.py))
|
|
|
- Linear Regression ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/linear_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/linear_regression.py))
|
|
|
- Logistic Regression ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/2_BasicModels/logistic_regression.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/2_BasicModels/logistic_regression.py))
|
|
@@ -18,16 +18,16 @@ Code examples for some popular machine learning algorithms, using TensorFlow lib
|
|
|
- AlexNet ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/alexnet.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/alexnet.py))
|
|
|
- Recurrent Neural Network (LSTM) ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/reccurent_network.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/recurrent_network.py))
|
|
|
- Bidirectional Recurrent Neural Network (LSTM) ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/bidirectional_rnn.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/bidirectional_rnn.py))
|
|
|
-- AutoEncoder ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb)) / ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py))
|
|
|
+- AutoEncoder ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/3_NeuralNetworks/autoencoder.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/3_NeuralNetworks/autoencoder.py))
|
|
|
|
|
|
-#### 4 - Utils
|
|
|
+#### 4 - Utilities
|
|
|
- Save and Restore a model ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/save_restore_model.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/save_restore_model.py))
|
|
|
- Tensorboard - Graph and loss visualization ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/4_Utils/tensorboard_basic.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/4_Utils/tensorboard_basic.py))
|
|
|
|
|
|
-#### 5 - Multi GPU (Tensorboard)
|
|
|
+#### 5 - Multi GPU
|
|
|
- Basic Operations on multi-GPU ([notebook](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/5_MultiGPU/multigpu_basics.ipynb)) ([code](https://github.com/aymericdamien/TensorFlow-Examples/blob/master/examples/5_MultiGPU/multigpu_basics.py))
|
|
|
|
|
|
-## Going further - More Examples
|
|
|
+## More Examples
|
|
|
The following examples are coming from [TFLearn](https://github.com/tflearn/tflearn), a library that provides a simplified interface for TensorFlow. You can have a look, there are many [examples](https://github.com/tflearn/tflearn/tree/master/examples) and [pre-built operations and layers](http://tflearn.org/doc_index/#api).
|
|
|
|
|
|
#### Basics
|