{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Tensorboard Basics\n",
"\n",
"Graph and Loss visualization using Tensorboard. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/).\n",
"\n",
"- Author: Aymeric Damien\n",
"- Project: https://github.com/aymericdamien/TensorFlow-Examples/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from __future__ import print_function\n",
"\n",
"import tensorflow as tf\n",
"\n",
"# Import MINST data\n",
"from tensorflow.examples.tutorials.mnist import input_data\n",
"mnist = input_data.read_data_sets(\"/tmp/data/\", one_hot=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Parameters\n",
"learning_rate = 0.01\n",
"training_epochs = 25\n",
"batch_size = 100\n",
"display_epoch = 1\n",
"logs_path = '/tmp/tensorflow_logs/example/'\n",
"\n",
"# tf Graph Input\n",
"# mnist data image of shape 28*28=784\n",
"x = tf.placeholder(tf.float32, [None, 784], name='InputData')\n",
"# 0-9 digits recognition => 10 classes\n",
"y = tf.placeholder(tf.float32, [None, 10], name='LabelData')\n",
"\n",
"# Set model weights\n",
"W = tf.Variable(tf.zeros([784, 10]), name='Weights')\n",
"b = tf.Variable(tf.zeros([10]), name='Bias')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Construct model and encapsulating all ops into scopes, making\n",
"# Tensorboard's Graph visualization more convenient\n",
"with tf.name_scope('Model'):\n",
" # Model\n",
" pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax\n",
"with tf.name_scope('Loss'):\n",
" # Minimize error using cross entropy\n",
" cost = tf.reduce_mean(-tf.reduce_sum(y * tf.log(pred), reduction_indices=1))\n",
"with tf.name_scope('SGD'):\n",
" # Gradient Descent\n",
" optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)\n",
"with tf.name_scope('Accuracy'):\n",
" # Accuracy\n",
" acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1))\n",
" acc = tf.reduce_mean(tf.cast(acc, tf.float32))\n",
"\n",
"# Initializing the variables\n",
"init = tf.global_variables_initializer()\n",
"\n",
"# Create a summary to monitor cost tensor\n",
"tf.summary.scalar(\"loss\", cost)\n",
"# Create a summary to monitor accuracy tensor\n",
"tf.summary.scalar(\"accuracy\", acc)\n",
"# Merge all summaries into a single op\n",
"merged_summary_op = tf.summary.merge_all()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 0001 cost= 1.182138961\n",
"Epoch: 0002 cost= 0.664609327\n",
"Epoch: 0003 cost= 0.552565036\n",
"Epoch: 0004 cost= 0.498541865\n",
"Epoch: 0005 cost= 0.465393374\n",
"Epoch: 0006 cost= 0.442491178\n",
"Epoch: 0007 cost= 0.425474149\n",
"Epoch: 0008 cost= 0.412152022\n",
"Epoch: 0009 cost= 0.401320939\n",
"Epoch: 0010 cost= 0.392305281\n",
"Epoch: 0011 cost= 0.384732356\n",
"Epoch: 0012 cost= 0.378109478\n",
"Epoch: 0013 cost= 0.372409370\n",
"Epoch: 0014 cost= 0.367236996\n",
"Epoch: 0015 cost= 0.362727492\n",
"Epoch: 0016 cost= 0.358627345\n",
"Epoch: 0017 cost= 0.354815522\n",
"Epoch: 0018 cost= 0.351413656\n",
"Epoch: 0019 cost= 0.348314827\n",
"Epoch: 0020 cost= 0.345429416\n",
"Epoch: 0021 cost= 0.342749324\n",
"Epoch: 0022 cost= 0.340224642\n",
"Epoch: 0023 cost= 0.337897302\n",
"Epoch: 0024 cost= 0.335720168\n",
"Epoch: 0025 cost= 0.333691911\n",
"Optimization Finished!\n",
"Accuracy: 0.9143\n",
"Run the command line:\n",
"--> tensorboard --logdir=/tmp/tensorflow_logs \n",
"Then open http://0.0.0.0:6006/ into your web browser\n"
]
}
],
"source": [
"# Start Training\n",
"with tf.Session() as sess:\n",
" sess.run(init)\n",
"\n",
" # op to write logs to Tensorboard\n",
" summary_writer = tf.summary.FileWriter(logs_path, graph=tf.get_default_graph())\n",
"\n",
" # Training cycle\n",
" for epoch in range(training_epochs):\n",
" avg_cost = 0.\n",
" total_batch = int(mnist.train.num_examples / batch_size)\n",
" # Loop over all batches\n",
" for i in range(total_batch):\n",
" batch_xs, batch_ys = mnist.train.next_batch(batch_size)\n",
" # Run optimization op (backprop), cost op (to get loss value)\n",
" # and summary nodes\n",
" _, c, summary = sess.run([optimizer, cost, merged_summary_op],\n",
" feed_dict={x: batch_xs, y: batch_ys})\n",
" # Write logs at every iteration\n",
" summary_writer.add_summary(summary, epoch * total_batch + i)\n",
" # Compute average loss\n",
" avg_cost += c / total_batch\n",
" # Display logs per epoch step\n",
" if (epoch+1) % display_epoch == 0:\n",
" print(\"Epoch:\", '%04d' % (epoch+1), \"cost=\", \"{:.9f}\".format(avg_cost))\n",
"\n",
" print(\"Optimization Finished!\")\n",
"\n",
" # Test model\n",
" # Calculate accuracy\n",
" print(\"Accuracy:\", acc.eval({x: mnist.test.images, y: mnist.test.labels}))\n",
"\n",
" print(\"Run the command line:\\n\" \\\n",
" \"--> tensorboard --logdir=/tmp/tensorflow_logs \" \\\n",
" \"\\nThen open http://0.0.0.0:6006/ into your web browser\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Loss and Accuracy Visualization\n",
"\n",
"
"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Graph Visualization\n",
"\n",
"
"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python [default]",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.12"
}
},
"nbformat": 4,
"nbformat_minor": 1
}