''' Nearest Neighbor classification on MNIST with TensorFlow ''' import numpy as np import tensorflow as tf # Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) #In this example, we limit mnist data Xtr, Ytr = mnist.train.next_batch(5000) #5000 for training (nn candidates) Xte, Yte = mnist.test.next_batch(200) #200 for testing #Reshape images to 1D Xtr = np.reshape(Xtr, newshape=(-1, 28*28)) Xte = np.reshape(Xte, newshape=(-1, 28*28)) xtr = tf.placeholder("float", [None, 784]) xte = tf.placeholder("float", [784]) #Calculation of L1 Distance distance = tf.reduce_sum(tf.abs(tf.add(xtr, tf.neg(xte))), reduction_indices=1) #Predict: Get min distance index (Nearest neighbor) pred = tf.arg_min(distance, 0) accuracy = 0. init = tf.initialize_all_variables() with tf.Session() as sess: sess.run(init) for i in range(len(Xte)): nn_index = sess.run(pred, feed_dict={xtr: Xtr, xte: Xte[i,:]}) #Get nn class label and compare it to its true label print "Test", i, "Prediction:", np.argmax(Ytr[nn_index]), "True Class:", np.argmax(Yte[i]) if np.argmax(Ytr[nn_index]) == np.argmax(Yte[i]): accuracy += 1./len(Xte) print "Done!" print "Accuracy:", accuracy