''' Graph and Loss visualization using Tensorboard. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Parameters learning_rate = 0.01 training_epochs = 25 batch_size = 100 display_step = 1 logs_path = '/tmp/tensorflow_logs/example' # Network Parameters n_hidden_1 = 256 # 1st layer number of features n_hidden_2 = 256 # 2nd layer number of features n_input = 784 # MNIST data input (img shape: 28*28) n_classes = 10 # MNIST total classes (0-9 digits) # tf Graph Input # mnist data image of shape 28*28=784 x = tf.placeholder(tf.float32, [None, 784], name='InputData') # 0-9 digits recognition => 10 classes y = tf.placeholder(tf.float32, [None, 10], name='LabelData') # Create model def multilayer_perceptron(x, weights, biases): # Hidden layer with RELU activation layer_1 = tf.add(tf.matmul(x, weights['w1']), biases['b1']) layer_1 = tf.nn.relu(layer_1) # Create a summary to visualize the first layer ReLU activation tf.histogram_summary("relu1", layer_1) # Hidden layer with RELU activation layer_2 = tf.add(tf.matmul(layer_1, weights['w2']), biases['b2']) layer_2 = tf.nn.relu(layer_2) # Create another summary to visualize the second layer ReLU activation tf.histogram_summary("relu2", layer_2) # Output layer out_layer = tf.add(tf.matmul(layer_2, weights['w3']), biases['b3']) return out_layer # Store layers weight & bias weights = { 'w1': tf.Variable(tf.random_normal([n_input, n_hidden_1]), name='W1'), 'w2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2]), name='W2'), 'w3': tf.Variable(tf.random_normal([n_hidden_2, n_classes]), name='W3') } biases = { 'b1': tf.Variable(tf.random_normal([n_hidden_1]), name='b1'), 'b2': tf.Variable(tf.random_normal([n_hidden_2]), name='b2'), 'b3': tf.Variable(tf.random_normal([n_classes]), name='b3') } # Encapsulating all ops into scopes, making Tensorboard's Graph # Visualization more convenient with tf.name_scope('Model'): # Build model pred = multilayer_perceptron(x, weights, biases) with tf.name_scope('Loss'): # Softmax Cross entropy (cost function) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(pred, y)) with tf.name_scope('SGD'): # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate) # Op to calculate every variable gradient grads = tf.gradients(loss, tf.trainable_variables()) grads = list(zip(grads, tf.trainable_variables())) # Op to update all variables according to their gradient apply_grads = optimizer.apply_gradients(grads_and_vars=grads) with tf.name_scope('Accuracy'): # Accuracy acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) acc = tf.reduce_mean(tf.cast(acc, tf.float32)) # Initializing the variables init = tf.initialize_all_variables() # Create a summary to monitor cost tensor tf.scalar_summary("loss", loss) # Create a summary to monitor accuracy tensor tf.scalar_summary("accuracy", acc) # Create summaries to visualize weights for var in tf.trainable_variables(): tf.histogram_summary(var.name, var) # Summarize all gradients for grad, var in grads: tf.histogram_summary(var.name + '/gradient', grad) # Merge all summaries into a single op merged_summary_op = tf.merge_all_summaries() # Launch the graph with tf.Session() as sess: sess.run(init) # op to write logs to Tensorboard summary_writer = tf.train.SummaryWriter(logs_path, graph=tf.get_default_graph()) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Run optimization op (backprop), cost op (to get loss value) # and summary nodes _, c, summary = sess.run([apply_grads, loss, merged_summary_op], feed_dict={x: batch_xs, y: batch_ys}) # Write logs at every iteration summary_writer.add_summary(summary, epoch * total_batch + i) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if (epoch+1) % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("Optimization Finished!") # Test model # Calculate accuracy print("Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels})) print("Run the command line:\n" \ "--> tensorboard --logdir=/tmp/tensorflow_logs " \ "\nThen open http://0.0.0.0:6006/ into your web browser")