''' Graph and Loss visualization using Tensorboard. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import print_function import tensorflow as tf # Import MINST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Parameters learning_rate = 0.01 training_epochs = 25 batch_size = 100 display_step = 1 logs_path = '/tmp/tensorflow_logs/example' # tf Graph Input # mnist data image of shape 28*28=784 x = tf.placeholder(tf.float32, [None, 784], name='InputData') # 0-9 digits recognition => 10 classes y = tf.placeholder(tf.float32, [None, 10], name='LabelData') # Set model weights W = tf.Variable(tf.zeros([784, 10]), name='Weights') b = tf.Variable(tf.zeros([10]), name='Bias') # Construct model and encapsulating all ops into scopes, making # Tensorboard's Graph visualization more convenient with tf.name_scope('Model'): # Model pred = tf.nn.softmax(tf.matmul(x, W) + b) # Softmax with tf.name_scope('Loss'): # Minimize error using cross entropy cost = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred), reduction_indices=1)) with tf.name_scope('SGD'): # Gradient Descent optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) with tf.name_scope('Accuracy'): # Accuracy acc = tf.equal(tf.argmax(pred, 1), tf.argmax(y, 1)) acc = tf.reduce_mean(tf.cast(acc, tf.float32)) # Initializing the variables init = tf.initialize_all_variables() # Create a summary to monitor cost tensor tf.scalar_summary("loss", cost) # Create a summary to monitor accuracy tensor tf.scalar_summary("accuracy", acc) # Merge all summaries into a single op merged_summary_op = tf.merge_all_summaries() # Launch the graph with tf.Session() as sess: sess.run(init) # op to write logs to Tensorboard summary_writer = tf.train.SummaryWriter(logs_path, graph=tf.get_default_graph()) # Training cycle for epoch in range(training_epochs): avg_cost = 0. total_batch = int(mnist.train.num_examples/batch_size) # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Run optimization op (backprop), cost op (to get loss value) # and summary nodes _, c, summary = sess.run([optimizer, cost, merged_summary_op], feed_dict={x: batch_xs, y: batch_ys}) # Write logs at every iteration summary_writer.add_summary(summary, epoch * total_batch + i) # Compute average loss avg_cost += c / total_batch # Display logs per epoch step if (epoch+1) % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(avg_cost)) print("Optimization Finished!") # Test model # Calculate accuracy print("Accuracy:", acc.eval({x: mnist.test.images, y: mnist.test.labels})) print("Run the command line:\n" \ "--> tensorboard --logdir=/tmp/tensorflow_logs " \ "\nThen open http://0.0.0.0:6006/ into your web browser")