''' Linear Regression with Eager API. A linear regression learning algorithm example using TensorFlow's Eager API. Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import absolute_import, division, print_function import matplotlib.pyplot as plt import numpy as np import tensorflow as tf # Set Eager API tf.enable_eager_execution() tfe = tf.contrib.eager # Training Data train_X = [3.3, 4.4, 5.5, 6.71, 6.93, 4.168, 9.779, 6.182, 7.59, 2.167, 7.042, 10.791, 5.313, 7.997, 5.654, 9.27, 3.1] train_Y = [1.7, 2.76, 2.09, 3.19, 1.694, 1.573, 3.366, 2.596, 2.53, 1.221, 2.827, 3.465, 1.65, 2.904, 2.42, 2.94, 1.3] n_samples = len(train_X) # Parameters learning_rate = 0.01 display_step = 100 num_steps = 1000 # Weight and Bias W = tfe.Variable(np.random.randn()) b = tfe.Variable(np.random.randn()) # Linear regression (Wx + b) def linear_regression(inputs): return inputs * W + b # Mean square error def mean_square_fn(model_fn, inputs, labels): return tf.reduce_sum(tf.pow(model_fn(inputs) - labels, 2)) / (2 * n_samples) # SGD Optimizer optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) # Compute gradients grad = tfe.implicit_gradients(mean_square_fn) # Initial cost, before optimizing print("Initial cost= {:.9f}".format( mean_square_fn(linear_regression, train_X, train_Y)), "W=", W.numpy(), "b=", b.numpy()) # Training for step in range(num_steps): optimizer.apply_gradients(grad(linear_regression, train_X, train_Y)) if (step + 1) % display_step == 0 or step == 0: print("Epoch:", '%04d' % (step + 1), "cost=", "{:.9f}".format(mean_square_fn(linear_regression, train_X, train_Y)), "W=", W.numpy(), "b=", b.numpy()) # Graphic display plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, np.array(W * train_X + b), label='Fitted line') plt.legend() plt.show()