# -*- coding: utf-8 -*- """ Auto Encoder Example. Using an auto encoder on MNIST handwritten digits. References: Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-2324, November 1998. Links: [MNIST Dataset] http://yann.lecun.com/exdb/mnist/ """ from __future__ import division, print_function, absolute_import import tensorflow as tf import numpy as np import matplotlib.pyplot as plt # Import MINST data import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Parameters learning_rate = 0.01 training_epochs = 20 batch_size = 256 display_step = 1 examples_to_show = 10 # Network Parameters n_hidden_1 = 256 # 1st layer num features n_hidden_2 = 128 # 2nd layer num features n_input = 784 # MNIST data input (img shape: 28*28) # tf Graph input (only pictures) X = tf.placeholder("float", [None, n_input]) weights = { 'encoder_h1': tf.Variable(tf.random_normal([n_input, n_hidden_1])), 'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_hidden_2])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_2, n_hidden_1])), 'decoder_h2': tf.Variable(tf.random_normal([n_hidden_1, n_input])), } biases = { 'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_1])), 'decoder_b2': tf.Variable(tf.random_normal([n_input])), } # Building the encoder def encoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']), biases['encoder_b1'])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']), biases['encoder_b2'])) return layer_2 # Building the decoder def decoder(x): # Encoder Hidden layer with sigmoid activation #1 layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']), biases['decoder_b1'])) # Decoder Hidden layer with sigmoid activation #2 layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']), biases['decoder_b2'])) return layer_2 # Construct model encoder_op = encoder(X) decoder_op = decoder(encoder_op) y_pred = decoder_op y_true = X # Define loss and optimizer, minimize the squared error cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2)) optimizer = tf.train.RMSPropOptimizer(learning_rate).minimize(cost) # Initializing the variables init = tf.initialize_all_variables() # Launch the graph with tf.Session() as sess: sess.run(init) total_batch = int(mnist.train.num_examples/batch_size) # Training cycle for epoch in range(training_epochs): # Loop over all batches for i in range(total_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) # Fit training using batch data _, cost_value = sess.run([optimizer, cost], feed_dict={X: batch_xs}) # Display logs per epoch step if epoch % display_step == 0: print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(cost_value)) print("Optimization Finished!") #Applying encode and decode over test set encode_decode = sess.run(y_pred, feed_dict={X: mnist.test.images[:examples_to_show]}) # Compare original images with their reconstructions f, a = plt.subplots(2, 10, figsize=(10, 2)) for i in range(examples_to_show): a[0][i].imshow(np.reshape(mnist.test.images[i], (28, 28))) a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) f.show() plt.draw() plt.waitforbuttonpress() # # Regression, with mean square error # net = tflearn.regression(decoder, optimizer='adam', learning_rate=0.001, # loss='mean_square', metric=None) # # # Training the auto encoder # model = tflearn.DNN(net, tensorboard_verbose=0) # model.fit(X, X, n_epoch=10, validation_set=(testX, testX), # run_id="auto_encoder", batch_size=256) # # # Encoding X[0] for test # print("\nTest encoding of X[0]:") # # New model, re-using the same session, for weights sharing # encoding_model = tflearn.DNN(encoder, session=model.session) # print(encoding_model.predict([X[0]])) # # # Testing the image reconstruction on new data (test set) # print("\nVisualizing results after being encoded and decoded:") # testX = tflearn.data_utils.shuffle(testX)[0] # # Applying encode and decode over test set # encode_decode = model.predict(testX) # # Compare original images with their reconstructions # f, a = plt.subplots(2, 10, figsize=(10, 2)) # for i in range(10): # a[0][i].imshow(np.reshape(testX[i], (28, 28))) # a[1][i].imshow(np.reshape(encode_decode[i], (28, 28))) # f.show() # plt.draw() # plt.waitforbuttonpress()