''' Multi-GPU Training Example. Train a convolutional neural network on multiple GPU with TensorFlow. This example is using TensorFlow layers, see 'convolutional_network_raw' example for a raw TensorFlow implementation with variables. This example is using the MNIST database of handwritten digits (http://yann.lecun.com/exdb/mnist/) Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' from __future__ import division, print_function, absolute_import import numpy as np import tensorflow as tf import time # Import MNIST data from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) # Training Parameters num_gpus = 2 num_steps = 200 learning_rate = 0.001 batch_size = 1024 display_step = 10 # Network Parameters num_input = 784 # MNIST data input (img shape: 28*28) num_classes = 10 # MNIST total classes (0-9 digits) dropout = 0.75 # Dropout, probability to keep units # Build a convolutional neural network def conv_net(x, n_classes, dropout, reuse, is_training): # Define a scope for reusing the variables with tf.variable_scope('ConvNet', reuse=reuse): # MNIST data input is a 1-D vector of 784 features (28*28 pixels) # Reshape to match picture format [Height x Width x Channel] # Tensor input become 4-D: [Batch Size, Height, Width, Channel] x = tf.reshape(x, shape=[-1, 28, 28, 1]) # Convolution Layer with 64 filters and a kernel size of 5 x = tf.layers.conv2d(x, 64, 5, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 x = tf.layers.max_pooling2d(x, 2, 2) # Convolution Layer with 256 filters and a kernel size of 5 x = tf.layers.conv2d(x, 256, 3, activation=tf.nn.relu) # Convolution Layer with 512 filters and a kernel size of 5 x = tf.layers.conv2d(x, 512, 3, activation=tf.nn.relu) # Max Pooling (down-sampling) with strides of 2 and kernel size of 2 x = tf.layers.max_pooling2d(x, 2, 2) # Flatten the data to a 1-D vector for the fully connected layer x = tf.contrib.layers.flatten(x) # Fully connected layer (in contrib folder for now) x = tf.layers.dense(x, 2048) # Apply Dropout (if is_training is False, dropout is not applied) x = tf.layers.dropout(x, rate=dropout, training=is_training) # Fully connected layer (in contrib folder for now) x = tf.layers.dense(x, 1024) # Apply Dropout (if is_training is False, dropout is not applied) x = tf.layers.dropout(x, rate=dropout, training=is_training) # Output layer, class prediction out = tf.layers.dense(x, n_classes) # Because 'softmax_cross_entropy_with_logits' loss already apply # softmax, we only apply softmax to testing network out = tf.nn.softmax(out) if not is_training else out return out def average_gradients(tower_grads): average_grads = [] for grad_and_vars in zip(*tower_grads): # Note that each grad_and_vars looks like the following: # ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN)) grads = [] for g, _ in grad_and_vars: # Add 0 dimension to the gradients to represent the tower. expanded_g = tf.expand_dims(g, 0) # Append on a 'tower' dimension which we will average over below. grads.append(expanded_g) # Average over the 'tower' dimension. grad = tf.concat(grads, 0) grad = tf.reduce_mean(grad, 0) # Keep in mind that the Variables are redundant because they are shared # across towers. So .. we will just return the first tower's pointer to # the Variable. v = grad_and_vars[0][1] grad_and_var = (grad, v) average_grads.append(grad_and_var) return average_grads # By default, all variables will be placed on '/gpu:0' # So we need a custom device function, to assign all variables to '/cpu:0' # Note: If GPUs are peered, '/gpu:0' can be a faster option PS_OPS = ['Variable', 'VariableV2', 'AutoReloadVariable'] def assign_to_device(device, ps_device='/cpu:0'): def _assign(op): node_def = op if isinstance(op, tf.NodeDef) else op.node_def if node_def.op in PS_OPS: return "/" + ps_device else: return device return _assign # Place all ops on CPU by default with tf.device('/cpu:0'): tower_grads = [] reuse_vars = False # tf Graph input X = tf.placeholder(tf.float32, [None, num_input]) Y = tf.placeholder(tf.float32, [None, num_classes]) # Loop over all GPUs and construct their own computation graph for i in range(num_gpus): with tf.device(assign_to_device('/gpu:{}'.format(i), ps_device='/cpu:0')): # Split data between GPUs _x = X[i * batch_size: (i+1) * batch_size] _y = Y[i * batch_size: (i+1) * batch_size] # Because Dropout have different behavior at training and prediction time, we # need to create 2 distinct computation graphs that share the same weights. # Create a graph for training logits_train = conv_net(_x, num_classes, dropout, reuse=reuse_vars, is_training=True) # Create another graph for testing that reuse the same weights logits_test = conv_net(_x, num_classes, dropout, reuse=True, is_training=False) # Define loss and optimizer (with train logits, for dropout to take effect) loss_op = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits( logits=logits_train, labels=_y)) optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) grads = optimizer.compute_gradients(loss_op) # Only first GPU compute accuracy if i == 0: # Evaluate model (with test logits, for dropout to be disabled) correct_pred = tf.equal(tf.argmax(logits_test, 1), tf.argmax(_y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) reuse_vars = True tower_grads.append(grads) tower_grads = average_gradients(tower_grads) train_op = optimizer.apply_gradients(tower_grads) # Initialize the variables (i.e. assign their default value) init = tf.global_variables_initializer() # Start Training with tf.Session() as sess: # Run the initializer sess.run(init) # Keep training until reach max iterations for step in range(1, num_steps + 1): # Get a batch for each GPU batch_x, batch_y = mnist.train.next_batch(batch_size * num_gpus) # Run optimization op (backprop) ts = time.time() sess.run(train_op, feed_dict={X: batch_x, Y: batch_y}) te = time.time() - ts if step % display_step == 0 or step == 1: # Calculate batch loss and accuracy loss, acc = sess.run([loss_op, accuracy], feed_dict={X: batch_x, Y: batch_y}) print("Step " + str(step) + ": Minibatch Loss= " + \ "{:.4f}".format(loss) + ", Training Accuracy= " + \ "{:.3f}".format(acc) + ", %i Examples/sec" % int(len(batch_x)/te)) step += 1 print("Optimization Finished!") # Calculate accuracy for MNIST test images print("Testing Accuracy:", \ np.mean([sess.run(accuracy, feed_dict={X: mnist.test.images[i:i+batch_size], Y: mnist.test.labels[i:i+batch_size]}) for i in range(0, len(mnist.test.images), batch_size)]))